A135167 a(n) = 7^n + 5^n + 3^n - 2^n. Constants are the prime numbers in decreasing order.
2, 13, 79, 487, 3091, 20143, 133939, 903727, 6161731, 42325903, 292298899, 2026329967, 14085955171, 98111299663, 684331355059, 4778093404207, 33385561441411, 233393582449423, 1632228682334419, 11417969833438447, 79887637214988451, 559022711699743183, 3912205265750868979
Offset: 0
Examples
a(4)=3091 because 7^4=2401, 5^4=625, 3^4=81, 2^4=16 and we can write 2401+625+81-16=3091.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (17,-101,247,-210).
Crossrefs
Programs
-
Magma
[7^n+5^n+3^n-2^n: n in [0..50]]; // Vincenzo Librandi, Dec 15 2010
-
Mathematica
Table[7^n + 5^n + 3^n - 2^n, {n, 0,50}] (* or *) LinearRecurrence[{17, -101, 247, -210}, {2, 13, 79, 487}, 50] (* G. C. Greubel, Sep 30 2016 *)
-
PARI
a(n)=7^n+5^n+3^n-2^n \\ Charles R Greathouse IV, Sep 30 2016
Formula
a(n) = 7^n + 5^n + 3^n - 2^n.
From G. C. Greubel, Sep 30 2016: (Start)
a(n) = 17*a(n-1) - 101*a(n-2) + 247*a(n-3) - 210*a(n-4).
G.f.: (2 - 21*x + 60*x^2 - 37*x^3)/((1 -2*x)*(1 -3*x)*(1 -5*x)*(1 -7*x)).
E.g.f.: exp(7*x) + exp(5*x) + exp(3*x) - exp(2*x). (End)
Extensions
More terms from Vincenzo Librandi, Dec 15 2010