cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A135167 a(n) = 7^n + 5^n + 3^n - 2^n. Constants are the prime numbers in decreasing order.

Original entry on oeis.org

2, 13, 79, 487, 3091, 20143, 133939, 903727, 6161731, 42325903, 292298899, 2026329967, 14085955171, 98111299663, 684331355059, 4778093404207, 33385561441411, 233393582449423, 1632228682334419, 11417969833438447, 79887637214988451, 559022711699743183, 3912205265750868979
Offset: 0

Views

Author

Omar E. Pol, Nov 21 2007

Keywords

Examples

			a(4)=3091 because 7^4=2401, 5^4=625, 3^4=81, 2^4=16 and we can write 2401+625+81-16=3091.
		

Crossrefs

Programs

  • Magma
    [7^n+5^n+3^n-2^n: n in [0..50]]; // Vincenzo Librandi, Dec 15 2010
    
  • Mathematica
    Table[7^n + 5^n + 3^n - 2^n, {n, 0,50}] (* or *) LinearRecurrence[{17, -101, 247, -210}, {2, 13, 79, 487}, 50] (* G. C. Greubel, Sep 30 2016 *)
  • PARI
    a(n)=7^n+5^n+3^n-2^n \\ Charles R Greathouse IV, Sep 30 2016

Formula

a(n) = 7^n + 5^n + 3^n - 2^n.
From G. C. Greubel, Sep 30 2016: (Start)
a(n) = 17*a(n-1) - 101*a(n-2) + 247*a(n-3) - 210*a(n-4).
G.f.: (2 - 21*x + 60*x^2 - 37*x^3)/((1 -2*x)*(1 -3*x)*(1 -5*x)*(1 -7*x)).
E.g.f.: exp(7*x) + exp(5*x) + exp(3*x) - exp(2*x). (End)

Extensions

More terms from Vincenzo Librandi, Dec 15 2010