A135168 a(n) = 7^n + 5^n + 3^n + 2^n.
4, 17, 87, 503, 3123, 20207, 134067, 903983, 6162243, 42326927, 292300947, 2026334063, 14085963363, 98111316047, 684331387827, 4778093469743, 33385561572483, 233393582711567, 1632228682858707, 11417969834487023, 79887637217085603, 559022711703937487
Offset: 0
Examples
a(4) = 3123 = 7^4 + 5^4 + 3^4 + 2^4 = 2401 + 625 + 81 + 16.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Index entries for linear recurrences with constant coefficients, signature (17,-101,247,-210).
Crossrefs
Programs
-
Magma
[7^n+5^n+3^n+2^n: n in [0..25]]; // Vincenzo Librandi, Jun 11 2011
-
Maple
A135168:=n->7^n+5^n+3^n+2^n; seq(A135168(k), k=0..100); # Wesley Ivan Hurt, Nov 05 2013
-
Mathematica
Table[7^n+5^n+3^n+2^n, {n,0,100}] (* Wesley Ivan Hurt, Nov 05 2013 *) LinearRecurrence[{17, -101, 247, -210}, {4, 17, 87, 503}, 25] (* G. C. Greubel, Sep 30 2016 *)
-
PARI
a(n)=7^n+5^n+3^n+2^n \\ Charles R Greathouse IV, Sep 30 2016
Formula
From G. C. Greubel, Sep 30 2016: (Start)
a(n) = 17*a(n-1) - 101*a(n-2) + 247*a(n-3) - 210*a(n-4).
G.f.: (4 - 51*x + 202*x^2 - 247*x^3)/((1 -2*x)*(1 -3*x)*(1 -5*x)*(1 -7*x)).
E.g.f.: exp(7*x) + exp(5*x) + exp(3*x) + exp(2*x). (End)
Extensions
Edited by N. J. A. Sloane, Dec 14 2007
Comments