A135247 a(n) = 3*a(n-1) + 2*a(n-2) - 6*a(n-3).
1, 3, 11, 33, 103, 309, 935, 2805, 8431, 25293, 75911, 227733, 683263, 2049789, 6149495, 18448485, 55345711, 166037133, 498111911, 1494335733, 4483008223, 13449024669, 40347076055, 121041228165, 363123688591, 1089371065773, 3268113205511, 9804339616533
Offset: 0
Links
- Sean A. Irvine, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (3,2,-6).
Crossrefs
Cf. A016133.
Programs
-
GAP
a:=[1,3,11];; for n in [4..30] do a[n]:=3*a[n-1]+2*a[n-2]-6*a[n-3]; od; a; # G. C. Greubel, Nov 20 2019
-
Magma
R
:=PowerSeriesRing(Integers(), 30); Coefficients(R!( 1/(1-3*x-2*x^2+6*x^3) )); // G. C. Greubel, Nov 20 2019 -
Maple
seq(coeff(series(1/(1-3*x-2*x^2+6*x^3), x, n+1), x, n), n = 0..30); # G. C. Greubel, Nov 20 2019
-
Mathematica
LinearRecurrence[{3,2,-6},{1,3,11},30] (* Harvey P. Dale, Jun 27 2015 *)
-
PARI
my(x='x+O('x^30)); Vec(1/(1-3*x-2*x^2+6*x^3)) \\ G. C. Greubel, Nov 20 2019
-
Sage
def A135247_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P( 1/(1-3*x-2*x^2+6*x^3) ).list() A135247_list(30) # G. C. Greubel, Nov 20 2019
Formula
G.f.: 1/((1-3*x)*(1-2*x^2)). - G. C. Greubel, Oct 04 2016
From Mathew Englander, Jan 08 2024: (Start)
a(n) = 3*a(n-1) + A077957(n) for n >= 1.
(End)
Extensions
More terms from Harvey P. Dale, Jun 27 2015
Dropped two leading terms = 0. - Joerg Arndt, Jan 18 2024
Comments