A135254 Binomial transform of A131666.
0, 0, 1, 4, 12, 33, 90, 252, 729, 2160, 6480, 19521, 58806, 176904, 531441, 1595052, 4785156, 14353281, 43053282, 129146724, 387420489, 1162241784, 3486725352, 10460235105, 31380882462, 94143001680, 282429536481, 847289140884
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (6,-12,9).
Crossrefs
Cf. A133474.
Programs
-
GAP
a:=[0,1,4];; for n in [4..30] do a[n]:=6*a[n-1]-12*a[n-2]+9*a[n-3]; od; Concatenation([0], a); # G. C. Greubel, Nov 21 2019
-
Magma
R
:=PowerSeriesRing(Integers(), 30); [0,0] cat Coefficients(R!( x^2*(1-2*x)/((1-3*x+3*x^2)*(1-3*x)) )); // G. C. Greubel, Nov 21 2019 -
Maple
seq(coeff(series(x^2*(1-2*x)/((1-3*x+3*x^2)*(1-3*x)), x, n+1), x, n), n = 0..30); # G. C. Greubel, Nov 21 2019
-
Mathematica
CoefficientList[Series[x^2(2x-1)/((3x^2-3x+1)(3x-1)),{x,0,30}],x] (* or *) LinearRecurrence[{6,-12,9},{0,0,1,4},30] (* Harvey P. Dale, May 26 2011 *)
-
PARI
my(x='x+O('x^30)); concat([0,0], Vec(x^2*(1-2*x)/((1-3*x+3*x^2)*(1-3*x)))) \\ G. C. Greubel, Nov 21 2019
-
Sage
def A135254_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P(x^2*(1-2*x)/((1-3*x+3*x^2)*(1-3*x))).list() A135254_list(30) # G. C. Greubel, Nov 21 2019
Formula
From R. J. Mathar, Apr 02 2008: (Start)
O.g.f.: x^2*(1-2*x)/((1 - 3*x + 3*x^2)*(1-3*x)).
a(n) = 6*a(n-1) - 12*a(n-2) + 9*a(n-3). (End)
Extensions
More terms from R. J. Mathar, Apr 02 2008