cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A135258 Inverse binomial transform of A131666 after removing A131666(0) = 0.

Original entry on oeis.org

0, 1, -1, 2, -3, 7, -14, 29, -57, 114, -227, 455, -910, 1821, -3641, 7282, -14563, 29127, -58254, 116509, -233017, 466034, -932067, 1864135, -3728270, 7456541, -14913081, 29826162, -59652323, 119304647, -238609294, 477218589, -954437177, 1908874354
Offset: 0

Views

Author

Paul Curtz, Dec 01 2007

Keywords

Comments

The inverse binomial transform generally equals the sequence of first terms of the iterated differences (i.e., equals the diagonal of the arrangement in the standard hand-written display of the differences).

Crossrefs

Cf. A113405.

Programs

  • Mathematica
    LinearRecurrence[{-2, 0, 1, 2}, {0, 1, -1, 2}, 50] (* G. C. Greubel, Oct 04 2016 *)
  • PARI
    concat(0, Vec(x*(1 + x)/((x^2 +x +1)*(1 +2*x)*(1-x)) + O(x^50))) \\ Michel Marcus, Oct 05 2016

Formula

O.g.f.: x*(1 + x)/((x^2 +x +1)*(1 +2*x)*(1-x)). - R. J. Mathar, Jul 22 2008
a(n) = -2*a(n-1) + a(n-3) + 2*a(n-4). - G. C. Greubel, Oct 04 2016

Extensions

Edited and corrected by R. J. Mathar, Jul 22 2008