A135266 Partial sums of A132357.
0, 1, 5, 19, 60, 182, 546, 1639, 4919, 14761, 44286, 132860, 398580, 1195741, 3587225, 10761679, 32285040, 96855122, 290565366, 871696099, 2615088299, 7845264901, 23535794706, 70607384120, 211822152360, 635466457081
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (4,-3,-1,4,-3).
Programs
-
Mathematica
Join[{0}, Table[(1/4)*3^(n + 1) - (1/12)*(-1)^n + (1/3)*Cos[Pi*n/3] - (Sqrt[3]/3)*Sin[Pi*n/3] - 1, {n, 1, 25}]] (* G. C. Greubel, Oct 07 2016 *)
-
PARI
a(n)=([0,1,0,0,0; 0,0,1,0,0; 0,0,0,1,0; 0,0,0,0,1; -3,4,-1,-3,4]^n*[0;1;5;19;60])[1,1] \\ Charles R Greathouse IV, Oct 08 2016
Formula
a(n+1) - 3*a(n) = 0, 1, 2, 4, 3, 2,... (periodically extended with period length 6) = partial sums of A132367.
a(n) = (1/4)*3^(n+1) - (1/12)*(-1)^n + (1/3)*cos(Pi*n/3) - (sqrt(3)/3)*sin (Pi*n/3) - 1. Or, a(n) = (1/4)*3^(n+1) + (1/4)*[ -3; -5; -7; -5; -3; -1] for n>=0. - Richard Choulet, Jan 02 2008
O.g.f.: x*(1 +x +2*x^2)/((3*x-1)*(x+1)(x^2-x+1)*(x-1)). - R. J. Mathar, Jul 28 2008
Extensions
Edited and extended by R. J. Mathar, Jul 28 2008