cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A135297 Number of Riemann zeta function zeros on the critical line, less than n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 7, 7, 7, 8, 8, 8, 8, 8, 9, 10, 10, 10, 11, 11, 11, 11, 12, 12, 12, 13, 14, 14, 14, 14, 14, 15, 15, 16, 16, 17, 17, 17, 18, 18, 18, 19, 19, 20, 20, 21, 21, 21, 22, 22, 23, 23, 23, 24, 25, 25, 25, 25, 26, 26, 27, 28, 28, 28, 29, 29
Offset: 1

Views

Author

Keywords

Comments

This sequence is just the cumulative distribution of the zeros.
Apart from differing singularities, the beginning of this sequence agrees with the zeta zero counting functions (RiemannSiegelTheta(n) + im(log(zeta(1/2 + i*n))))/Pi + 1 and (sign(im(zeta(1/2 + i*n))) - 1)/2 + floor(n/(2*Pi)*log(n/(2*Pi*e)) + 7/8) + 1, but disagrees later. The first deviations are seen in the continuous counting function at locations of zeta zeros with indices A153815. See also A282793 and A282794. - Mats Granvik, Feb 21 2017

Examples

			The first nontrivial zero is 1/2 + 14.1347...*i; hence, a(15)=1.
		

References

  • H. M. Edwards, Riemann's Zeta Function, Dover Publications, New York, 1974 (ISBN 978-0-486-41740-0)

Crossrefs

Programs

  • Mathematica
    nn = 100; t = Table[0, {nn}]; k = 1; While[z = Im[ZetaZero[k]]; z < nn, k++; t[[Ceiling[z] ;; nn]]++]
    With[{zz=Ceiling[Im[N[ZetaZero[Range[30]]]]]},Table[If[MemberQ[zz,n],1,0],{n,Max[zz]}]]//Accumulate (* Harvey P. Dale, Aug 15 2017 *)
  • PARI
    a(n) = #lfunzeros(L, n) \\ Felix Fröhlich, Jun 10 2019
  • Sage
    # This function makes sure no zeros are missed.
    def A135297_list(n):
        Z = lcalc.zeros(n)
        R = []; pos = 1; count = 0
        for z in Z:
            while pos < z:
                R.append(count)
                pos += 1
            count += 1
        return R
    A135297_list(30) # Peter Luschny, May 02 2014
    

Formula

a(n) ~ n log (n/(2*Pi*e)) / (2*Pi). - Charles R Greathouse IV, Mar 11 2011, corrected by Hal M. Switkay, Oct 03 2021
From Mats Granvik, May 13 2017: (Start)
a(n) ~ im(LogGamma(1/4 + i*n/2))/Pi - n/(2*Pi)*log(Pi) + im(log(zeta(1/2 + i*n)))/Pi + 1.
a(n) ~ floor(im(LogGamma(1/4 + i*n/2))/Pi - n/(2*Pi)*log(Pi) + 1) + (sign(im(zeta (1/2 + i*n))) - 1)/2 + 1.
a(n) ~ (RiemannSiegelTheta(n) + im(log(zeta(1/2 + i*n))))/Pi + 1.
a(n) ~ (floor(RiemannSiegelTheta(n)/Pi + 1)) + (sign(im(zeta(1/2 + i*n))) - 1)/2 + 1.
a(n) ~ n/(2*Pi)*log(n/(2*Pi*e)) + 7/8 + (im(log(zeta(1/2 + i*n))))/Pi - 1 - O(n^(-1)) + 1.
a(n) ~ floor(n/(2*Pi)*log(n/(2*Pi*e)) + 7/8) + (sign(im(zeta(1/2 + i*n))) - 1)/2 + 1.
See A286707 for exact relations.
(End)