A135297 Number of Riemann zeta function zeros on the critical line, less than n.
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 7, 7, 7, 8, 8, 8, 8, 8, 9, 10, 10, 10, 11, 11, 11, 11, 12, 12, 12, 13, 14, 14, 14, 14, 14, 15, 15, 16, 16, 17, 17, 17, 18, 18, 18, 19, 19, 20, 20, 21, 21, 21, 22, 22, 23, 23, 23, 24, 25, 25, 25, 25, 26, 26, 27, 28, 28, 28, 29, 29
Offset: 1
Keywords
Examples
The first nontrivial zero is 1/2 + 14.1347...*i; hence, a(15)=1.
References
- H. M. Edwards, Riemann's Zeta Function, Dover Publications, New York, 1974 (ISBN 978-0-486-41740-0)
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
- Mats Granvik, Mathematics Stackexchange
- Andrew Guinand, A summation formula in the theory of prime numbers, page 111
- Andrew Guinand, A summation formula in the theory of prime numbers, Proc. London Math. Soc. (1948) s2-50 (1): 107-119, see page 111.
- Raymond Manzoni, Riemann Zeta function - number of zeros, Mathematics Stackexchange, 2013.
- Eric W. Weisstein, MathWorld: Riemann Zeta Function Zeros
- Wikipedia, Riemann Zeta Function
- Index entries for sequences related to zeta function
Programs
-
Mathematica
nn = 100; t = Table[0, {nn}]; k = 1; While[z = Im[ZetaZero[k]]; z < nn, k++; t[[Ceiling[z] ;; nn]]++] With[{zz=Ceiling[Im[N[ZetaZero[Range[30]]]]]},Table[If[MemberQ[zz,n],1,0],{n,Max[zz]}]]//Accumulate (* Harvey P. Dale, Aug 15 2017 *)
-
PARI
a(n) = #lfunzeros(L, n) \\ Felix Fröhlich, Jun 10 2019
-
Sage
# This function makes sure no zeros are missed. def A135297_list(n): Z = lcalc.zeros(n) R = []; pos = 1; count = 0 for z in Z: while pos < z: R.append(count) pos += 1 count += 1 return R A135297_list(30) # Peter Luschny, May 02 2014
Formula
a(n) ~ n log (n/(2*Pi*e)) / (2*Pi). - Charles R Greathouse IV, Mar 11 2011, corrected by Hal M. Switkay, Oct 03 2021
From Mats Granvik, May 13 2017: (Start)
a(n) ~ im(LogGamma(1/4 + i*n/2))/Pi - n/(2*Pi)*log(Pi) + im(log(zeta(1/2 + i*n)))/Pi + 1.
a(n) ~ floor(im(LogGamma(1/4 + i*n/2))/Pi - n/(2*Pi)*log(Pi) + 1) + (sign(im(zeta (1/2 + i*n))) - 1)/2 + 1.
a(n) ~ (RiemannSiegelTheta(n) + im(log(zeta(1/2 + i*n))))/Pi + 1.
a(n) ~ (floor(RiemannSiegelTheta(n)/Pi + 1)) + (sign(im(zeta(1/2 + i*n))) - 1)/2 + 1.
a(n) ~ n/(2*Pi)*log(n/(2*Pi*e)) + 7/8 + (im(log(zeta(1/2 + i*n))))/Pi - 1 - O(n^(-1)) + 1.
a(n) ~ floor(n/(2*Pi)*log(n/(2*Pi*e)) + 7/8) + (sign(im(zeta(1/2 + i*n))) - 1)/2 + 1.
See A286707 for exact relations.
(End)
Comments