A135339 Number of Dyck paths of semilength n having no DUDU's starting at level 1.
1, 1, 2, 4, 11, 32, 99, 318, 1051, 3550, 12200, 42520, 149930, 533890, 1917181, 6934722, 25243539, 92405718, 339940116, 1256122632, 4660081434, 17350844808, 64814186646, 242838410652, 912333763806, 3436240272972, 12972454874704, 49078874293528, 186051766180496
Offset: 0
Keywords
Examples
a(4) = 11 because among the 14 (= A000108(4)) Dyck paths of semilength 4 the following paths do not qualify: UDUDUUDD, UUDDUDUD and UDUDUDUD.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Guo-Niu Han, Enumeration of Standard Puzzles, 2011. [Cached copy]
- Guo-Niu Han, Enumeration of Standard Puzzles, arXiv:2006.14070 [math.CO], 2020.
- A. Sapounakis, I. Tasoulas and P. Tsikouras, Counting strings in Dyck paths, Discrete Math., 307 (2007), 2909-2924.
Programs
-
Maple
G:=(2*z*C-z+C)/(1+z*C): C:=((1-sqrt(1-4*z))*1/2)/z: Gser:=series(G,z=0,30): seq(coeff(Gser,z,n),n=0..25); # Emeric Deutsch, Dec 13 2007 a:= proc (n) options operator, arrow: binomial(2*n-2, n-1)/n+(sum((-1)^j*(j+3)*binomial(2*n-j-2,n),j=0..n-2))/(n+1) end proc: 1, seq(a(n),n=1..25); # Emeric Deutsch, Dec 13 2007 # third Maple program: a:= proc(n) option remember; `if`(n<4, [1$2, 2, 4][n+1], ((5*n-1)*a(n-1)+(11*n-28)*a(n-2)+(4*n-14)*a(n-3))/(2*n+2)) end: seq(a(n), n=0..30); # Alois P. Heinz, Sep 28 2015 A135339List := proc(m) local A, P, n; A := [1,1,2]; P := [1,2]; for n from 1 to m - 2 do P := ListTools:-PartialSums([op(P), P[-2]]); A := [op(A), P[-1]] od; A end: A135339List(28); # Peter Luschny, Mar 26 2022
-
Mathematica
CoefficientList[Series[(2*x*(1-Sqrt[1-4*x])/(2*x)-x+(1-Sqrt[1-4*x])/(2*x))/(1+x*(1-Sqrt[1-4*x])/(2*x)), {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 20 2014 *)
Formula
G.f.: (2*z*C - z + C)/(1 + z*C), where C = (1 - sqrt(1 - 4*z))/(2*z) is the g.f. of the Catalan numbers (A000108). - Emeric Deutsch, Dec 13 2007
a(n) = binomial(2*n-2, n-1)/n + (Sum_{j=0..n-2} (-1)^j * (j + 3) * binomial(2*n-j-2, n))/(n+1) for n >= 1. - Emeric Deutsch, Dec 13 2007
a(n) ~ 25 * 4^(n - 1)/(9 * sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Mar 20 2014
Conjecture: 2*(n + 1)*a(n) + (-5*n + 1)*a(n-1) + (-11*n + 28)*a(n-2) + 2*(-2*n + 7)*a(n-3) = 0 for n >= 4. - R. J. Mathar, Oct 20 2015
Extensions
Edited and extended by Emeric Deutsch, Dec 13 2007
Comments