A135343 a(n) = 3*a(n-1) + 4*a(n-2) - a(n-3) + 3*a(n-4) + 4*a(n-5).
1, 3, 12, 51, 205, 820, 3277, 13107, 52428, 209715, 838861, 3355444, 13421773, 53687091, 214748364, 858993459, 3435973837, 13743895348, 54975581389, 219902325555, 879609302220, 3518437208883, 14073748835533, 56294995342132, 225179981368525, 900719925474099
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (3, 4, -1, 3, 4).
Programs
-
Mathematica
LinearRecurrence[{3,4,-1,3,4},{1,3,12,51,205},30] (* Harvey P. Dale, Jun 03 2013 *)
-
PARI
Vec((1-x+4*x^3)/((1+x)*(1-4*x)*(1-x+x^2)) + O(x^30)) \\ Colin Barker, Oct 11 2016
Formula
a(n+1) - 4*a(n) = hexaperiodic -1, 0, 3, 1, 0, -3.
a(n) = (1/15)*( 3*4^(n+1) - 2*(-1)^n + 5*cos(Pi*n/3) - 5*sqrt(3)*cos(Pi*n/3) ). - Richard Choulet, Jan 04 2008
G.f.: (1-x+4*x^3) / ((1+x)*(1-4*x)*(1-x+x^2)). - Colin Barker, Oct 11 2016
Extensions
More terms from Harvey P. Dale, Jun 03 2013
Removed incorrect formula, Joerg Arndt, Oct 11 2016
Comments