A135344 a(n) = 3*a(n-1) - a(n-3) + 3*a(n-4), with initial values 1,1,1,1.
1, 1, 1, 1, 5, 17, 53, 157, 469, 1405, 4217, 12653, 37961, 113881, 341641, 1024921, 3074765, 9224297, 27672893, 83018677, 249056029, 747168085, 2241504257, 6724512773, 20173538321, 60520614961, 181561844881, 544685534641, 1634056603925, 4902169811777
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (3, 0, -1, 3).
Crossrefs
Cf. A007395.
Programs
-
Mathematica
LinearRecurrence[{3,0,-1,3},{1,1,1,1},40] (* Harvey P. Dale, Apr 15 2012 *)
Formula
3*a(n) - a(n+1) = hexaperiodic 2, 2, 2, -2, -2, -2 = 2*A130151.
From Richard Choulet, Jan 02 2008: (Start)
a(n) = (1/14)*3^n + (1/6)*(-1)^n + (16/21)*cos(Pi*n/3) + (8*sqrt(3)/21)*sin(Pi*n/3).
a(n) = (1/14)*3^n + (1/14)*[13; 11; 5; -13; -11; -5]. (End)
G.f.: ( -1+2*x+2*x^2+x^3 ) / ( (3*x-1)*(1+x)*(x^2-x+1) ). - Harvey P. Dale, Apr 15 2012
42*a(n) = 7*(-1)^n +8*A167380(n+3) +3^(n+1). - R. J. Mathar, Oct 03 2021