cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A135344 a(n) = 3*a(n-1) - a(n-3) + 3*a(n-4), with initial values 1,1,1,1.

Original entry on oeis.org

1, 1, 1, 1, 5, 17, 53, 157, 469, 1405, 4217, 12653, 37961, 113881, 341641, 1024921, 3074765, 9224297, 27672893, 83018677, 249056029, 747168085, 2241504257, 6724512773, 20173538321, 60520614961, 181561844881, 544685534641, 1634056603925, 4902169811777
Offset: 0

Views

Author

Paul Curtz, Dec 06 2007

Keywords

Crossrefs

Cf. A007395.

Programs

  • Mathematica
    LinearRecurrence[{3,0,-1,3},{1,1,1,1},40] (* Harvey P. Dale, Apr 15 2012 *)

Formula

3*a(n) - a(n+1) = hexaperiodic 2, 2, 2, -2, -2, -2 = 2*A130151.
From Richard Choulet, Jan 02 2008: (Start)
a(n) = (1/14)*3^n + (1/6)*(-1)^n + (16/21)*cos(Pi*n/3) + (8*sqrt(3)/21)*sin(Pi*n/3).
a(n) = (1/14)*3^n + (1/14)*[13; 11; 5; -13; -11; -5]. (End)
G.f.: ( -1+2*x+2*x^2+x^3 ) / ( (3*x-1)*(1+x)*(x^2-x+1) ). - Harvey P. Dale, Apr 15 2012
42*a(n) = 7*(-1)^n +8*A167380(n+3) +3^(n+1). - R. J. Mathar, Oct 03 2021