A135355 Semiprimes with digits in ascending order.
4, 6, 9, 14, 15, 25, 26, 34, 35, 38, 39, 46, 49, 57, 58, 69, 123, 129, 134, 145, 146, 158, 159, 169, 178, 235, 237, 247, 249, 259, 267, 278, 289, 346, 358, 458, 469, 478, 489, 579, 589, 679, 689, 789, 1234, 1238, 1247, 1257, 1267, 1345, 1346, 1347, 1349, 1357
Offset: 1
Links
- R. J. Mathar, Table of n, a(n) for n = 1..175
Programs
-
Maple
isA001358 := proc(n) if numtheory[bigomega](n) = 2 then true; else false ; fi ; end: isA009993 := proc(n) local dgs,i ; dgs := convert(n,base,10) ; if nops(dgs) = 1 then RETURN(true) ; fi ; for i from 1 to nops(dgs)-1 do if op(i,dgs) <= op(i+1,dgs) then RETURN(false) ; fi ; od: RETURN(true) ; end: isA135355 := proc(n) isA001358(n) and isA009993(n) ; end: for n from 4 to 1400 do if isA135355(n) then printf("%d, ",n) ; fi ; od: # R. J. Mathar, Dec 11 2007 # second Maple program: b:= proc(n) n, seq(b(10*n+j), j=irem(n, 10)+1..9) end: select(numtheory[bigomega]=2, {seq(b(n), n=1..9)})[]; # Alois P. Heinz, Apr 13 2025
-
Mathematica
Select[Range[1357],PrimeOmega[#]==2&&AllTrue[Differences[IntegerDigits[#]],Positive]&] (* James C. McMahon, Apr 13 2025 *)
Formula
Extensions
Corrected by R. J. Mathar, Dec 11 2007
Comments