A135356 Triangle T(n,k) read by rows: coefficients in the recurrence of sequences which equal their n-th differences.
2, 2, 0, 3, -3, 2, 4, -6, 4, 0, 5, -10, 10, -5, 2, 6, -15, 20, -15, 6, 0, 7, -21, 35, -35, 21, -7, 2, 8, -28, 56, -70, 56, -28, 8, 0, 9, -36, 84, -126, 126, -84, 36, -9, 2, 10, -45, 120, -210, 252, -210, 120, -45, 10, 0, 11, -55, 165, -330, 462, -462, 330, -165, 55, -11, 2
Offset: 1
Examples
Triangle begins with row n=1: 2; 2, 0; 3, -3, 2; 4, -6, 4, 0; 5, -10, 10, -5, 2; 6, -15, 20, -15, 6, 0; 7, -21, 35, -35, 21, -7, 2; 8, -28, 56, -70, 56, -28, 8, 0; 9, -36, 84, -126, 126, -84, 36, -9, 2;
Links
- Alois P. Heinz, Rows n = 1..141, flattened
Crossrefs
Programs
-
Magma
A135356:= func< n,k | k eq n select 1-(-1)^n else (-1)^(k+1)*Binomial(n,k) >; [A135356(n,k): k in [1..n], n in [1..12]]; // G. C. Greubel, Apr 09 2023
-
Maple
T:= (p, s)-> `if`(p=s, 2*irem(p, 2), (-1)^(s+1) *binomial(p, s)): seq(seq(T(p, s), s=1..p), p=1..11); # Alois P. Heinz, Aug 26 2011
-
Mathematica
T[p_, s_]:= If[p==s, 2*Mod[s, 2], (-1)^(s+1)*Binomial[p, s]]; Table[T[p, s], {p, 12}, {s, p}]//Flatten (* Jean-François Alcover, Feb 19 2015, after Alois P. Heinz *)
-
SageMath
def A135356(n,k): if (k==n): return 2*(n%2) else: return (-1)^(k+1)*binomial(n,k) flatten([[A135356(n,k) for k in range(1,n+1)] for n in range(1,13)]) # G. C. Greubel, Apr 09 2023
Formula
T(n,k) = (-1)^(k+1)*A007318(n, k). T(n,n) = 1 - (-1)^n.
Sum_{k=1..n} T(n, k) = 2.
From G. C. Greubel, Apr 09 2023: (Start)
Sum_{k=1..n} (-1)^(k-1)*T(n, k) = 2*A051049(n-1).
Sum_{k=1..n-1} T(n, k) = (1 + (-1)^n).
Sum_{k=1..n-1} (-1)^(k-1)*T(n, k) = A000225(n-1).
T(2*n, n) = (-1)^(n-1)*A000984(n), n >= 1. (End)
Extensions
Edited by R. J. Mathar, Jun 10 2008
Comments