cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A133500 The powertrain or power train map: Powertrain(n): if abcd... is the decimal expansion of a number n, then the powertrain of n is the number n' = a^b*c^d* ..., which ends in an exponent or a base according as the number of digits is even or odd. a(0) = 0 by convention.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1, 3, 9, 27, 81, 243, 729, 2187, 6561, 19683, 1, 4, 16, 64, 256, 1024, 4096, 16384, 65536, 262144, 1, 5, 25, 125, 625, 3125, 15625, 78125, 390625, 1953125, 1, 6, 36, 216, 1296
Offset: 0

Views

Author

J. H. Conway, Dec 03 2007

Keywords

Comments

We take 0^0 = 1.
The fixed points are in A135385.
For 1-digit or 2-digit numbers this is the same as A075877. - R. J. Mathar, Mar 28 2012
a(A221221(n)) = A133048(A221221(n)) = A222493(n). - Reinhard Zumkeller, May 27 2013

Examples

			20 -> 2^0 = 1,
21 -> 2^1 = 2,
24 -> 2^4 = 16,
39 -> 3^9 = 19683,
623 -> 6^2*3 = 108,
etc.
		

Crossrefs

Cf. A075877, A133501 (number of steps to reach fixed point), A133502, A135385 (the conjectured list of fixed points), A135384 (numbers which converge to 2592). For records see A133504, A133505; for the fixed points that are reached when this map is iterated starting at n, see A287877.
Cf. also A133048 (powerback), A031346 and A003001 (persistence).
Cf. also A031298, A007376.

Programs

  • Haskell
    a133500 = train . reverse . a031298_row where
       train []       = 1
       train [x]      = x
       train (u:v:ws) = u ^ v * (train ws)
    -- Reinhard Zumkeller, May 27 2013
    
  • Maple
    powertrain:=proc(n) local a,i,n1,n2,t1,t2; n1:=abs(n); n2:=sign(n); t1:=convert(n1, base, 10); t2:=nops(t1); a:=1; for i from 0 to floor(t2/2)-1 do a := a*t1[t2-2*i]^t1[t2-2*i-1]; od: if t2 mod 2 = 1 then a:=a*t1[1]; fi; RETURN(n2*a); end; # N. J. A. Sloane, Dec 03 2007
  • Mathematica
    ptm[n_]:=Module[{idn=IntegerDigits[n]},If[EvenQ[Length[idn]],Times@@( #[[1]]^ #[[2]] &/@Partition[idn,2]),(Times@@(#[[1]]^#[[2]] &/@ Partition[ Most[idn],2]))Last[idn]]]; Array[ptm,70,0] (* Harvey P. Dale, Jul 15 2019 *)
  • Python
    def A133500(n):
        s = str(n)
        l = len(s)
        m = int(s[-1]) if l % 2 else 1
        for i in range(0,l-1,2):
            m *= int(s[i])**int(s[i+1])
        return m # Chai Wah Wu, Jun 16 2017

A309385 Numbers which converge to 24547284284866560000000000 under repeated application of the powertrain map of A133500.

Original entry on oeis.org

6672898, 6689728, 7266898, 7289668, 8966728, 8972668, 23667289, 23668972, 23726689, 23728966, 23896672, 23897266, 26667288, 26668872, 26726688, 26728866, 26886672, 26887266, 29367289, 29368972, 29667287, 29668772, 29723689, 29726687, 29728766, 29728936, 29728993, 29729389, 29876672, 29877266, 29893672, 29897236, 29897293, 29899372, 29937289, 29938972
Offset: 1

Views

Author

Martin Renner, Jul 27 2019

Keywords

Examples

			6672898 -> 6^6*7^2*8^9*8 = 2454728428486656 -> 2^4*5^4*7^2*8^4*2^8*4^8*6^6*5^6 = 24547284284866560000000000.
		

Crossrefs

A326735 Numbers which converge to 2 under repeated application of the powertrain map of A133500.

Original entry on oeis.org

2, 21, 28, 36, 44, 62, 93, 102, 112, 122, 132, 142, 152, 162, 172, 182, 192, 202, 211, 227, 229, 247, 256, 258, 263, 264, 272, 281, 286, 293, 302, 317, 324, 336, 342, 344, 349, 353, 358, 361, 376, 382, 402, 417, 419, 427, 433, 434, 441, 446, 456, 497, 502, 552
Offset: 1

Views

Author

Martin Renner, Jul 22 2019

Keywords

Examples

			28 -> 2^8 = 256 -> 2^5*6 = 192 -> 1^9*2 = 2.
		

Crossrefs

Programs

  • Python
    # change target for A326733-A326742, A135384, A309385
    def powertrain(n):
      p, s = 1, str(n)
      if len(s)%2 == 1: s += '1'
      for b, e in zip(s[0::2], s[1::2]): p *= int(b)**int(e)
      return p
    def aupto(limit, target=0):
      alst = []
      for n in range(1, limit+1):
        m, ptm = n, powertrain(n)
        while m != ptm: m, ptm = ptm, powertrain(ptm)
        if m == target: alst.append(n)
      return alst
    print(aupto(552, target=2)) # Michael S. Branicky, Feb 21 2021

A326733 Numbers which converge to 0 under repeated application of the powertrain map of A133500.

Original entry on oeis.org

0, 26, 35, 37, 38, 39, 43, 46, 47, 48, 49, 54, 55, 56, 57, 58, 59, 64, 65, 66, 67, 68, 69, 72, 73, 74, 76, 77, 78, 79, 82, 84, 85, 86, 87, 88, 89, 94, 95, 96, 97, 98, 99, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 210, 220, 230, 236, 237, 238, 239
Offset: 1

Views

Author

Martin Renner, Jul 22 2019

Keywords

Examples

			26 -> 2^6 = 64 -> 6^4 = 1296 -> 1^2*9^6 = 531441 -> 5^3*1^4*4^1 = 500 -> 5^0*0 = 0.
		

Crossrefs

A326734 Numbers which converge to 1 under repeated application of the powertrain map of A133500.

Original entry on oeis.org

1, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 24, 29, 30, 40, 42, 45, 50, 60, 63, 70, 80, 83, 90, 101, 111, 121, 131, 141, 151, 161, 171, 181, 191, 201, 215, 216, 217, 218, 219, 223, 224, 225, 226, 232, 233, 235, 241, 245, 257, 268, 274, 278, 282, 284, 285
Offset: 1

Views

Author

Martin Renner, Jul 22 2019

Keywords

Examples

			24 -> 2^4 = 16 -> 1^6 = 1.
		

Crossrefs

A326736 Numbers which converge to 3 under repeated application of the powertrain map of A133500.

Original entry on oeis.org

3, 31, 103, 113, 123, 133, 143, 153, 163, 173, 183, 193, 203, 303, 311, 403, 503, 603, 703, 803, 903, 1031, 1131, 1231, 1331, 1431, 1531, 1631, 1731, 1831, 1931, 2031, 3031, 3100, 3110, 3111, 3112, 3113, 3114, 3115, 3116, 3117, 3118, 3119, 3120, 3130, 3140
Offset: 1

Views

Author

Martin Renner, Jul 22 2019

Keywords

Examples

			31 -> 3^1 = 3.
		

Crossrefs

A326737 Numbers which converge to 4 under repeated application of the powertrain map of A133500.

Original entry on oeis.org

4, 22, 41, 104, 114, 124, 134, 144, 154, 164, 174, 184, 194, 204, 212, 221, 249, 304, 404, 411, 429, 504, 604, 624, 704, 804, 904, 1022, 1041, 1122, 1141, 1222, 1241, 1322, 1341, 1422, 1441, 1522, 1541, 1622, 1641, 1722, 1741, 1822, 1841, 1922, 1941, 2022
Offset: 1

Views

Author

Martin Renner, Jul 22 2019

Keywords

Examples

			249 -> 2^4*9 = 144 -> 1^4*4 = 4.
		

Crossrefs

A326738 Numbers which converge to 5 under repeated application of the powertrain map of A133500.

Original entry on oeis.org

5, 51, 53, 105, 115, 125, 135, 145, 155, 165, 175, 185, 195, 205, 305, 335, 345, 405, 455, 505, 511, 525, 527, 531, 537, 605, 692, 705, 745, 805, 875, 905, 925, 1051, 1053, 1151, 1153, 1251, 1253, 1351, 1353, 1451, 1453, 1551, 1553, 1651, 1653, 1751, 1753
Offset: 1

Views

Author

Martin Renner, Jul 22 2019

Keywords

Examples

			53 -> 5^3 = 125 -> 1^2*5 = 5.
		

Crossrefs

A326739 Numbers which converge to 6 under repeated application of the powertrain map of A133500.

Original entry on oeis.org

6, 61, 106, 116, 126, 136, 146, 156, 166, 176, 186, 196, 206, 213, 306, 312, 406, 506, 606, 611, 706, 724, 746, 806, 906, 1061, 1161, 1261, 1361, 1461, 1561, 1661, 1761, 1861, 1961, 2061, 2131, 2272, 2596, 3061, 3121, 3765, 3863, 4061, 4172, 4572, 5061, 6061
Offset: 1

Views

Author

Martin Renner, Jul 22 2019

Keywords

Examples

			724 -> 7^2*4 = 196 -> 1^9*6 = 6.
		

Crossrefs

A326740 Numbers which converge to 7 under repeated application of the powertrain map of A133500.

Original entry on oeis.org

7, 71, 75, 107, 117, 127, 137, 147, 157, 167, 177, 187, 197, 207, 307, 407, 507, 523, 543, 607, 707, 711, 723, 747, 751, 807, 907, 1071, 1075, 1171, 1175, 1271, 1275, 1371, 1375, 1471, 1475, 1571, 1575, 1671, 1675, 1771, 1775, 1871, 1875, 1971, 1975, 2071
Offset: 1

Views

Author

Martin Renner, Jul 22 2019

Keywords

Examples

			75 -> 7^5 = 16807 -> 1^6*8^0*7 = 7.
		

Crossrefs

Showing 1-10 of 12 results. Next