A135407 Partial products of A000032 (Lucas numbers beginning at 2).
2, 2, 6, 24, 168, 1848, 33264, 964656, 45338832, 3445751232, 423827401536, 84341652905664, 27158012235623808, 14149324374760003968, 11927880447922683345024, 16269628930966540082612736
Offset: 0
Examples
a(0) = L(0) = 2. a(1) = L(0)*L(1) = 2*1 = 2. a(2) = L(0)*L(1)*L(2) = 2*1*3 = 6. a(3) = L(0)*L(1)*L(2)*L(3) = 2*1*3*4 = 24.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..95
Programs
-
Mathematica
Rest[FoldList[Times,1,LucasL[Range[0,20]]]] (* Harvey P. Dale, Aug 21 2013 *) Table[Round[GoldenRatio^(n(n+1)/2) QPochhammer[-1, GoldenRatio-2, n+1]], {n, 0, 20}] (* Vladimir Reshetnikov, Sep 14 2016 *)
-
PARI
a(n) = prod(k=0, n, fibonacci(k+1)+fibonacci(k-1)); \\ Michel Marcus, Oct 13 2016
Formula
a(n) = Product_{k=0..n} A000032(k).
C = exp( Sum_{k>=1} 1/(k*(((3-sqrt(5))/2)^k-(-1)^k)) ). - Vaclav Kotesovec, Jun 08 2013
Comments