cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A024614 Numbers of the form x^2 + xy + y^2, where x and y are positive integers.

Original entry on oeis.org

3, 7, 12, 13, 19, 21, 27, 28, 31, 37, 39, 43, 48, 49, 52, 57, 61, 63, 67, 73, 75, 76, 79, 84, 91, 93, 97, 103, 108, 109, 111, 112, 117, 124, 127, 129, 133, 139, 147, 148, 151, 156, 157, 163, 169, 171, 172, 175, 181, 183, 189, 192, 193, 196, 199, 201, 208, 211, 217, 219, 223, 228
Offset: 1

Views

Author

Keywords

Comments

Equivalently, sequence A024612 with duplicates removed; i.e., numbers of the form i^2 - i*j + j^2, where 1 <= i < j.
A subsequence of A135412, which consists of multiples (by squarefree factors) of the numbers listed here. It appears that this lists numbers > 1 which have in their factorization: (a) no even power of 3 unless there is a factor == 1 (mod 6); (b) no odd power of 2 or of a prime == 5 (mod 6) and no even power unless there is a factor 3 or == 1 (mod 6). - M. F. Hasler, Aug 17 2016
If we regroup the entries in a triangle with row lengths A004526
3,
7,
12, 13,
19, 21,
27, 28, 31,
37, 39, 43,
... it seems that the j-th row of the triangle contains the numbers i^2+j^2-i*j in row j>=2 and column i = floor((j+1)/2) .. j-1. - R. J. Mathar, Aug 21 2016
Proof of the above characterization: the sequence is the union of 3*(the squares A000290) and A024606 (numbers x^2+xy+y^2 with x > y > 0). For the latter it is known that these are the numbers with a factor p==1 (mod 6) and any prime factor == 2 (mod 3) occurring to an even power. The former (3*n^2) are the same as (odd power of 3)*(even power of any other prime factor). The union of the two cases yields the earlier characterization. - M. F. Hasler, Mar 04 2018
Least term that can be written in exactly n ways is A300419(n). - Altug Alkan, Mar 04 2018
For the general theory see the Fouvry et al. reference and A296095. Bounds used in the Julia program are based on the theorems in this paper. - Peter Luschny, Mar 10 2018

Examples

			3 = 1^2 + 1^2 + 1*1, 7 = 2^2 + 1^2 + 2*1, ...
		

Crossrefs

Cf. A003136, A007645 (prime terms), A024612, A135412, A296095, A300419.

Programs

  • Julia
    function isA024614(n)
        n % 3 >= 2 && return false
        n == 3 && return true
        M = Int(round(2*sqrt(n/3)))
        for y in 2:M, x in 1:y
            n == x^2 + y^2 + x*y && return true
        end
        return false
    end
    A024614list(upto) = [n for n in 1:upto if isA024614(n)]
    println(A024614list(228)) # Peter Luschny, Mar 02 2018 updated Mar 17 2018
    
  • Maple
    isA024614 := proc(n)
        local i,j,disc;
        # n=i^2+j^2-i*j = (j-i)^2+i*j, 1<=i=1 and i*j>=j and i^2+j^2-i*j >= 1+j max search radius
        for j from 2 to n-1 do
            # i=(j +- sqrt(4n-3j^2))/2
            disc := 4*n-3*j^2 ;
            if disc >= 0 then
                if issqr(disc) then
                    i := (j+sqrt(disc))/2 ;
                    if type(i,'integer') and i >= 1 and i= 1 and iA024614(t) then
            printf("%d %d\n",n,t) ;
            n := n+1 ;
        end if;
    end do: # R. J. Mathar, Aug 21 2016
    # second Maple program:
    a:= proc(n) option remember; local k, x;
          for k from a(n-1)+1 do for x while x^2 x^2+(x+y)*y=k)((isqrt(4*k-3*x^2)-x)/2) then return k fi
          od od
        end: a(0):=0:
    seq(a(n), n=1..200);  # Alois P. Heinz, Mar 02 2018
  • Mathematica
    max = 228; T0 = {}; xm = Ceiling[Sqrt[max]]; While[T = T0; T0 = Table[x^2 + x y + y^2, {x, 1, xm}, {y, x, xm}] // Flatten // Union // Select[#, # <= max&]&; T != T0, xm = 2 xm]; T (* Jean-François Alcover, Mar 23 2018 *)
  • PARI
    is(n)={n>2&&!for(i=1, #n=Set(Col(factor(n)%6))/*consider prime factors mod 6*/, n[i][1]>1||next/*skip factors = 1 mod 6*/; /* odd power: ok only if p=3 */n[i][2]%2&&(n[i][1]!=3 || next) && return; /*even power: ok if there's a p==1, listed first*/ n[1][1]==1 || /*also ok if it's not a 3 and if there's a 3 elsewhere */ (n[i][1]==2 && i<#n && n[i+1][1]==3) || (n[i][1]>3 && for(j=1,i-1,n[j][1]==3 && next(2))||return))} \\ M. F. Hasler, Aug 17 2016, documented & bug fixed (following an observation by Altug Alkan) Mar 04 2018
    
  • PARI
    is(n)={(n=factor(n))||return/*n=1*/; /*exponents % 2, primes % 3*/ n[,2]%=2; n[,1]%=3; (n=Set(Col(n))) /*odd power of a prime == 2? will be last*/ [#n][2] && n[#n][1]==2 && return; /*factor == 1? will be 1st or after 3*/ n[1+(!n[1][1] && #n>1)][1]==1 || /*thrice a square?*/ (!n[1][1]&&n[1][2]&&!for(i=2,#n,n[i][2]&&return))} \\ Alternate code, 5% slower, maybe a bit less obscure. - M. F. Hasler, Mar 04 2018
    
  • PARI
    N=228; v=vector(N);
    for(x=1,N, x2=x*x; if(x2>N,break); for(y=x,N, t=x2+y*(x+y); if(t>N,break); v[t]=1;));
    for(n=1,N,if(v[n],print1(n,", "))); \\ Joerg Arndt, Mar 10 2018
    
  • PARI
    list(lim)=my(v=List(), x2); lim\=1; for(x=1, sqrtint(4*lim\3), x2=x^2; for(y=1, min((sqrt(4*lim-3*x2)-x)/2, x), listput(v, y*(x+y)+x2))); Set(v) \\ Charles R Greathouse IV, Mar 23 2018

Extensions

Edited by M. F. Hasler, Aug 17 2016
b-file for values a(1)..a(10^4) double-checked with PARI code by M. F. Hasler, Mar 04 2018

A004612 Numbers that are divisible only by primes congruent to 2 mod 3.

Original entry on oeis.org

1, 2, 4, 5, 8, 10, 11, 16, 17, 20, 22, 23, 25, 29, 32, 34, 40, 41, 44, 46, 47, 50, 53, 55, 58, 59, 64, 68, 71, 80, 82, 83, 85, 88, 89, 92, 94, 100, 101, 106, 107, 110, 113, 115, 116, 118, 121, 125, 128, 131, 136, 137
Offset: 1

Views

Author

Keywords

Comments

Square roots of numbers n such that n-th coefficient of eta(x)^3/eta(x^3)=-1, where eta(x) is given by A010815. - Benoit Cloitre, Oct 06 2005
Apparently the complement to A135412. - R. J. Mathar, Aug 21 2016

Examples

			2=2, 4=2^2, 5=5, 8=2^3, 10=2*5, 11=11, 16=2^4, 17=17, 20=2^2*5, 22 = 2*11, 23=23, 25=5^2, 29=29... (products of powers of elements of A003627). - _R. J. Mathar_, Jan 22 2021
		

Crossrefs

Programs

  • Magma
    [n: n in [1..300] | forall{d: d in PrimeDivisors(n) | d mod 3 eq 2}]; // Vincenzo Librandi, Aug 21 2012
  • Mathematica
    ok[1]=True;ok[n_]:=And@@(Mod[#,3]==2&)/@FactorInteger[n][[All,1]];Select[Range[200],ok] (* Vincenzo Librandi, Aug 21 2012 *)

A257642 Positive integers N such that there is a triangle with rational sides having area and perimeter both equal N.

Original entry on oeis.org

21, 24, 26, 27, 28, 30, 31, 33, 35, 36, 37, 39, 42, 43, 45, 47, 50, 51, 52, 55, 56, 58, 60, 61, 62, 63, 64, 66, 67, 71, 74, 75, 76, 77, 79, 81, 83, 85, 86, 88, 90, 91, 93, 94, 95, 96, 98, 99, 100, 102, 103, 105, 106, 107, 108, 109, 110, 112, 113, 115, 116, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 137, 138, 141, 143, 145, 147, 148, 149, 150
Offset: 1

Views

Author

Thomas Bokk, Nov 05 2015

Keywords

Comments

A positive integer N is in the sequence if and only if there exist positive rational numbers x,y such that x*y>1 and 4*x*y*(x+y)/(x*y-1)=N.
Except for N=27, a positive integer N is in this sequence if and only if N>20 and the elliptic curve w^2 = u^3 + N^2*(u+64)^2 has positive rank.

Crossrefs

Showing 1-3 of 3 results.