cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A135414 a(1)=a(2)=1 and for n>=3, a(n) = n - a(a(n-2)).

Original entry on oeis.org

1, 1, 2, 3, 4, 4, 4, 5, 6, 6, 7, 8, 9, 9, 9, 10, 11, 12, 12, 12, 13, 14, 14, 15, 16, 17, 17, 17, 18, 19, 19, 20, 21, 22, 22, 22, 23, 24, 25, 25, 25, 26, 27, 27, 28, 29, 30, 30, 30, 31, 32, 33, 33, 33, 34, 35, 35, 36, 37, 38, 38, 38, 39, 40, 40, 41, 42, 43, 43, 43, 44, 45, 46, 46
Offset: 1

Views

Author

Benoit Cloitre, Feb 17 2008, Feb 19 2008

Keywords

Comments

A generalization of Hofstadter's G-sequence.
Contribution from Daniel Platt (d.platt(AT)web.de), Jul 27 2009: (Start)
Conjecture: A recursively built tree structure can be obtained from the sequence:
.29.30.31.32.33.34.35.36.37.38.39.40.41.42.43.44.45..
..|..\./...|..|...\.|./...|..|...\.|./...|..\./...|..
.18..19...20.21....22....23.24....25....26..27...28..
..\...|.../...|.....\..../...|.....|.....\...|.../...
...\..|../....|......\../....|.....|......\..|../....
.....12......13.......14....15....16........17.......
......|........\......|...../......|.........|.......
......|..........\....|.../........|.........|.......
......8...............9...........10........11.......
......|.................\......./............|.......
......|...................\.../..............|.......
......5.....................6................7.......
.........\..................|............./..........
..............\.............|........../.............
....................\.......|....../.................
............................4........................
.........................../.........................
..........................3..........................
........................./...........................
........................2............................
......................./.............................
......................1..............................
When constructing the tree node n is connected to node a(n) below:
..n..
..|..
.a(n)
Same procedure as for A005206. Reading the nodes bottom-to-top, left-to-right provides the natural numbers. The tree has a recursive structure: The following construct will give - added on top of its own ends - the above tree:
.............. ... .
............./.../..
............/.../...
. ... .....X...X....
..\...\.../.../.....
...\...\./.../......
....X...X...X.......
.....\..|../........
......\.|./.........
........X...........
(End)

Examples

			x + x^2 + 2*x^3 + 3*x^4 + 4*x^5 + 4*x^6 + 4*x^7 + 5*x^8 + 6*x^9 + 6*x^10 + ...
		

Crossrefs

Cf. A001622, A005206, A379274 (mod 2).

Programs

  • Haskell
    a135414 n = a135414_list !! (n-1)
    a135414_list = 1 : 1 : zipWith (-) [3..] (map a135414 a135414_list)
    -- Reinhard Zumkeller, Nov 12 2011
  • Mathematica
    a[ n_] := 2 - Boole[ n==0] + Quotient[ n, GoldenRatio] + Quotient[ n + 1, GoldenRatio] - Quotient[ n + 3, GoldenRatio] (* Michael Somos, Jun 30 2011 *)
  • PARI
    a(n)=2+floor(n*(sqrt(5)-1)/2)+floor((n+1)*(sqrt(5)-1)/2)-floor((n+3)*(sqrt(5)-1)/2)
    
  • PARI
    {a(n) = local(g = (1 + sqrt(5)) / 2); 2 - (n==0) + n\g + (n + 1)\g - (n + 3)\g} /* Michael Somos, Jun 30 2011 */
    

Formula

a(n) = 2+floor(n*phi)+floor((n+1)*phi)-floor((n+3)*phi) where phi = (sqrt(5)-1)/2.
n = a(n) + a(a(n-2)) unless n = 2 or n = -3. - Michael Somos, Jun 30 2011