A134941 Mountain numbers.
1, 121, 131, 141, 151, 161, 171, 181, 191, 1231, 1241, 1251, 1261, 1271, 1281, 1291, 1321, 1341, 1351, 1361, 1371, 1381, 1391, 1421, 1431, 1451, 1461, 1471, 1481, 1491, 1521, 1531, 1541, 1561, 1571, 1581, 1591, 1621, 1631, 1641, 1651, 1671, 1681, 1691, 1721
Offset: 1
Examples
The A-number of this sequence (A134941) is itself a mountain number: . . . 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 . 4 . . 3 . . . . . . . . . . 1 . . . . 1
Links
- Joshua Zucker, Table of n, a(n) for n = 1..21846 (shows all terms).
Crossrefs
Programs
-
Haskell
import Data.List (elemIndices) a134941 n = a134941_list !! (n-1) a134941_list = elemIndices 1 a178333_list -- Reinhard Zumkeller, Oct 28 2001
-
Mathematica
mountainQ[n_] := MatchQ[ IntegerDigits[n], {1, a___, b_, c___, 1} /; OrderedQ[{1, a, b}, Less] && OrderedQ[ Reverse[{b, c, 1}], Less]]; mountainQ[1] = True; Select[Range[2000], mountainQ] (* Jean-François Alcover, Jun 13 2012 *) Prepend[Union @@ ((FromDigits@#&/@Flatten[Table[Join[(k=Prepend[#,1]&/@ Subsets[Range[2,#-1]])[[i]], {#}, (Reverse@# & /@k)[[j]]], {i, 2^(# - 2)}, {j, 2^(# - 2)}], 1])&/@Range[9]), 1] (* Hans Rudolf Widmer, Apr 30 2024 *)
-
Python
from itertools import product def ups(): d = "23456789" for b in product([0, 1], repeat=8): yield "1" + "".join(d[i]*b[i] for i in range(8)) def downsfrom(apex): if apex < 3: yield "1"*int(apex==2); return d = "8765432"[-(apex-2):] for b in product([0, 1], repeat=len(d)): yield "".join(d[i]*b[i] for i in range(len(d))) + "1" def A134941(): # return full sequence as a list mountain_strs = (u+d for u in ups() for d in downsfrom(int(u[-1]))) return sorted(int(ms) for ms in mountain_strs) print(A134941()[:45]) # Michael S. Branicky, Dec 31 2021
Comments