cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 24 results. Next

A135417 Number of mountain numbers (see A134941) with n digits.

Original entry on oeis.org

1, 0, 8, 56, 252, 784, 1792, 3108, 4166, 4352, 3544, 2232, 1068, 376, 92, 14, 1
Offset: 1

Views

Author

Suggested by Jonathan Vos Post, Nov 24 2007 and computed by Hans Havermann and Joshua Zucker, Nov 25 2007

Keywords

Comments

The total number is 21846.

Examples

			Contribution from _Reinhard Zumkeller_, May 25 2010: (Start)
a(1) = A178334(9) = 1;
a(2) = A178334(99) - A178334(9) = 1 - 1 = 0;
a(3) = A178334(999) - A178334(99) = 9 - 1 = 8;
a(4) = A178334(9999) - A178334(999) = 65 - 9 = 56. (End)
		

A178052 Digit sums of mountain numbers (cf. A134941).

Original entry on oeis.org

1, 4, 5, 6, 7, 8, 9, 10, 11, 7, 8, 9, 10, 11, 12, 13, 7, 9, 10, 11, 12, 13, 14, 8, 9, 11, 12, 13, 14, 15, 9, 10, 11, 13, 14, 15, 16, 10, 11, 12, 13, 15, 16, 17, 11, 12, 13, 14, 15, 17, 18, 12, 13, 14, 15, 16, 17, 19, 13, 14, 15, 16, 17, 18, 19, 9, 11, 12, 13, 14, 15, 16, 10, 11, 13, 14
Offset: 1

Views

Author

Reinhard Zumkeller, May 25 2010

Keywords

Comments

a(n) = A007953(A134941(n));
a(n) can be interpreted as the volume of the "mountain" A134941(n);
a(21846) = A007953(12345678987654321) = A000217(9)+A000217(8) = 45+36 = 81 is the largest term, as A134941(21846)=12345678987654321 is the most voluminous "mountain".

Examples

			n=552, A134941(552)=134941 (example from A134941):
. . level 9: . . . . . . . . X . . . . . .
. . level 8: . . . . . . . . X . . . . . .
. . level 7: . . . . . . . . X . . . . . .
. . level 6: . . . . . . . . X . . . . . .
. . level 5: . . . . . . . . X . . . . . .
. . level 4: . . . . . . X . X . X . . . .
. . level 3: . . . . X . X . X . X . . . .
. . level 2: . . . . X . X . X . X . . . .
. . level 1: . . X . X . X . X . X . X . .
---------- --------------------------------
. . . . a(552) = 1 + 3 + 4 + 9 + 4 + 1 = 22.
		

Crossrefs

Cf. A178053.

A178053 Digital roots of mountain numbers (cf. A134941).

Original entry on oeis.org

1, 4, 5, 6, 7, 8, 9, 1, 2, 7, 8, 9, 1, 2, 3, 4, 7, 9, 1, 2, 3, 4, 5, 8, 9, 2, 3, 4, 5, 6, 9, 1, 2, 4, 5, 6, 7, 1, 2, 3, 4, 6, 7, 8, 2, 3, 4, 5, 6, 8, 9, 3, 4, 5, 6, 7, 8, 1, 4, 5, 6, 7, 8, 9, 1, 9, 2, 3, 4, 5, 6, 7, 1, 2, 4, 5, 6, 7, 8, 2, 3, 4, 6, 7, 8, 9, 3, 4, 5, 6, 8, 9, 1, 4, 5, 6, 7, 8, 1, 2, 5, 6, 7, 8, 9
Offset: 1

Views

Author

Reinhard Zumkeller, May 25 2010

Keywords

Comments

a(n) = A010888(A134941(n)).

Examples

			A134941(552)=134941 --> 1+3+4+9+4+1=22 --> a(552)=2+2=4.
		

Crossrefs

Cf. A178052.

A178051 Peak values of mountain numbers (cf. A134941).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 3, 4, 5, 6, 7, 8, 9, 3, 4, 5, 6, 7, 8, 9, 4, 4, 5, 6, 7, 8, 9, 5, 5, 5, 6, 7, 8, 9, 6, 6, 6, 6, 7, 8, 9, 7, 7, 7, 7, 7, 8, 9, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 3, 4, 5, 6, 7, 8, 9, 4, 4, 5, 6, 7, 8, 9, 5, 5, 5, 6, 7, 8, 9, 6, 6, 6, 6, 7, 8, 9, 7, 7, 7, 7, 7, 8, 9, 8, 8, 8, 8, 8
Offset: 1

Views

Author

Reinhard Zumkeller, May 25 2010

Keywords

Comments

a(n) = A054055(A134941(n)).

Examples

			A134941(552)=134941 --> a(552) = MAX{1,3,4,9} = 9.
		

A134951 Mountain primes.

Original entry on oeis.org

131, 151, 181, 191, 1231, 1291, 1321, 1361, 1381, 1451, 1471, 1481, 1531, 1571, 1621, 1721, 1741, 1831, 1861, 1871, 1931, 1951, 12391, 12421, 12451, 12491, 12541, 12641, 12671, 12721, 12781, 12791, 12821, 12841, 12941, 13421, 13451, 13591, 13681
Offset: 1

Views

Author

Omar E. Pol, Nov 25 2007

Keywords

Comments

Mountain numbers that are prime numbers.
This sequence has 2620 terms. The largest is 134567897654321. - Jud McCranie, Feb 23 2009, Feb 24 2009

Examples

			The A-number of this sequence (A134951) is a mountain prime because 134951 is a mountain number and it is also a prime number.
. . . 9 . .
. . . . . .
. . . . . .
. . . . . .
. . . . 5 .
. . 4 . . .
. 3 . . . .
. . . . . .
1 . . . . 1
		

References

  • Chris K. Caldwell and G. L. Honaker, Jr; Prime Curios!, The Dictionary of Prime Number Trivia, CreateSpace (2009), p. 69, 216, 217.

Crossrefs

Formula

A000040 INTERSECT A134941.
A178333(a(n))*A010051(a(n)) = 1. - Reinhard Zumkeller, May 25 2010

Extensions

Edited by Omar E. Pol, Feb 26 2009
More terms from Max Alekseyev, Feb 06 2010
Minor edit and reference added by Omar E. Pol, Mar 25 2011

A134810 Giza numbers.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 121, 232, 343, 454, 565, 676, 787, 898, 12321, 23432, 34543, 45654, 56765, 67876, 78987, 1234321, 2345432, 3456543, 4567654, 5678765, 6789876, 123454321, 234565432, 345676543, 456787654, 567898765, 12345654321, 23456765432
Offset: 1

Views

Author

Omar E. Pol, Nov 25 2007, Nov 26 2007

Keywords

Comments

For n > 9 the structure of digits represents the pyramids of Giza. Also the top of a mountain. The first digit is equal to the last digit. The first digits are in consecutive increasing order. The last digits are in consecutive decreasing order. The largest digit is the central digit. The number of digits is odd. This sequence has 45 terms. The final term is 12345678987654321. Giza numbers are mountain numbers A134941 and palindromes A002113.
There are 10 - k numbers with 2*k - 1 digits. - Omar E. Pol, Aug 04 2011

Examples

			Illustration using the final term of this sequence:
  . . . . . . . . 9 . . . . . . . .
  . . . . . . . 8 . 8 . . . . . . .
  . . . . . . 7 . . . 7 . . . . . .
  . . . . . 6 . . . . . 6 . . . . .
  . . . . 5 . . . . . . . 5 . . . .
  . . . 4 . . . . . . . . . 4 . . .
  . . 3 . . . . . . . . . . . 3 . .
  . 2 . . . . . . . . . . . . . 2 .
  1 . . . . . . . . . . . . . . . 1
		

Crossrefs

Programs

  • Mathematica
    ups = Flatten[Table[Range[i, j - 1], {i, 1, 9}, {j, i + 1, 10}], 1];afull = Sort[  Map[ToExpression@StringJoin@Map[ToString, #[[;; -2]] ~Join~ Reverse[#]] &, ups]];afull (* James C. McMahon, Apr 11 2025 *)
  • Python
    ups = [tuple(range(i, j)) for i in range(1, 10) for j in range(i+1, 11)]
    afull = sorted(int("".join(map(str, u[:-1] + u[::-1]))) for u in ups)
    print(afull) # Michael S. Branicky, Aug 02 2022

Formula

A178333(a(n))*A136522(a(n)) = 1. - Reinhard Zumkeller, May 25 2010

A135602 Right-angled numbers with an internal digit as the vertex.

Original entry on oeis.org

101, 121, 212, 232, 323, 343, 434, 454, 545, 565, 656, 676, 767, 787, 878, 898, 989, 1012, 1210, 1232, 2101, 2123, 2321, 2343, 3212, 3234, 3432, 3454, 4323, 4345, 4543, 4565, 5434, 5456, 5654, 5676, 6545, 6567, 6765, 6787, 7656, 7678, 7876, 7898, 8767, 8789, 8987
Offset: 1

Views

Author

Omar E. Pol, Dec 02 2007

Keywords

Comments

The structure of digits represents a right angle. The vertex is an internal digit. In the graphic representation the points are connected by imaginary line segments from left to right. This sequence is finite. The final term has 19 digits: 9876543210123456789.

Examples

			Illustration using the final term of this sequence:
  9 . . . . . . . . . . . . . . . . . 9
  . 8 . . . . . . . . . . . . . . . 8 .
  . . 7 . . . . . . . . . . . . . 7 . .
  . . . 6 . . . . . . . . . . . 6 . . .
  . . . . 5 . . . . . . . . . 5 . . . .
  . . . . . 4 . . . . . . . 4 . . . . .
  . . . . . . 3 . . . . . 3 . . . . . .
  . . . . . . . 2 . . . 2 . . . . . . .
  . . . . . . . . 1 . 1 . . . . . . . .
  . . . . . . . . . 0 . . . . . . . . .
		

Crossrefs

Programs

  • Python
    ups = list(tuple(range(i, j)) for i in range(9) for j in range(i+2, 11))
    s = set(L[::-1] + R[1:] for L in ups for R in ups if L[0] == R[0])
    s |= set(L[:-1] + R[::-1] for L in ups for R in ups if L[-1] == R[-1])
    afull = sorted(int("".join(map(str, t))) for t in s if t[0] != 0)
    print(afull[:47]) # Michael S. Branicky, Aug 02 2022

A134853 Generalized mountain numbers.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 120, 121, 130, 131, 132, 140, 141, 142, 143, 150, 151, 152, 153, 154, 160, 161, 162, 163, 164, 165, 170, 171, 172, 173, 174, 175, 176, 180, 181, 182, 183, 184, 185, 186, 187, 190, 191, 192, 193, 194, 195, 196
Offset: 1

Views

Author

Omar E. Pol, Nov 26 2007, corrected May 15 2008

Keywords

Comments

a(1) to a(9) are equal to A000027. For n>9 the structure of the digits represents a mountain. The first digits are in increasing order. The last digits are in decreasing order. There is only one largest digit which represents the top of the mountain. This sequence is finite. The last member is 123456789876543210.
The sequence is a supersequence of A134941, because the restriction that both feet of the mountain are at "sea level" (first and last digit equal 1) is dropped here.
There are 173247 terms in this sequence. - Nathaniel Johnston, Dec 29 2010

Examples

			The number of this sequence (A134853) is a generalized mountain number.
. . . . . .
. . . 8 . .
. . . . . .
. . . . . .
. . . . 5 .
. . 4 . . .
. 3 . . . 3
. . . . . .
1 . . . . .
. . . . . .
		

Crossrefs

Programs

  • Python
    from itertools import chain, combinations as combs
    ups = list(chain.from_iterable(combs(range(10), r) for r in range(2, 11)))
    s = set(L[:-1] + R[::-1] for L in ups for R in ups if L[-1] == R[-1])
    afull = list(range(1, 10))
    afull += sorted(int("".join(map(str, t))) for t in s if t[0] != 0)
    print(afull[:60]) # Michael S. Branicky, Aug 02 2022

Extensions

Better definition and edited by Omar E. Pol, Nov 11 2009

A135601 Acute-angled numbers with an internal digit as the vertex.

Original entry on oeis.org

102, 103, 104, 105, 106, 107, 108, 109, 120, 130, 131, 132, 140, 141, 142, 143, 150, 151, 152, 153, 154, 160, 161, 162, 163, 164, 165, 170, 171, 172, 173, 174, 175, 176, 180, 181, 182, 183, 184, 185, 186, 187, 190, 191, 192, 193, 194, 195
Offset: 1

Views

Author

Omar E. Pol, Dec 02 2007

Keywords

Comments

The structure of digits represents an acute angle. The vertex is an internal digit. In the graphic representation the points are connected by imaginary line segments from left to right. This sequence is finite. The final term has 14 digits: 98765432102468.

Examples

			Illustration using the final term of this sequence:
  9 . . . . . . . . . . . . .
  . 8 . . . . . . . . . . . 8
  . . 7 . . . . . . . . . . .
  . . . 6 . . . . . . . . 6 .
  . . . . 5 . . . . . . . . .
  . . . . . 4 . . . . . 4 . .
  . . . . . . 3 . . . . . . .
  . . . . . . . 2 . . 2 . . .
  . . . . . . . . 1 . . . . .
  . . . . . . . . . 0 . . . .
		

Crossrefs

Programs

  • Python
    progressions = set(tuple(range(i, j+1, d)) for i in range(10) for d in range(1, 10-i) for j in range(i+d, 10))
    s = set()
    for left in progressions:
        for right in progressions:
            dl, dr = left[1] - left[0], right[1] - right[0]
            if dl + dr > 2:
                if left[-1] == right[-1]: s.add(left[:-1] + right[::-1])
                if left[0] == right[0]: s.add(left[::-1] + right[1:])
    afull = sorted(int("".join(map(str, t))) for t in s if t[0] != 0)
    print(afull[:53]) # Michael S. Branicky, Aug 02 2022

Formula

If a(n) does not end in 0, then A004086(a(n)) is a term; if a(n) does not start with 9, then A061601(a(n)) is a term. - Michael S. Branicky, Aug 02 2022

A135603 Obtuse-angled numbers with an internal digit as the vertex.

Original entry on oeis.org

100, 110, 112, 113, 114, 115, 116, 117, 118, 119, 122, 124, 125, 126, 127, 128, 129, 133, 134, 136, 137, 138, 139, 144, 145, 146, 148, 149, 155, 156, 157, 158, 166, 167, 168, 169, 177, 178, 179, 188, 189, 199, 200, 211, 220, 221, 223, 224, 225, 226, 227, 228, 229, 233
Offset: 1

Views

Author

Omar E. Pol, Dec 02 2007

Keywords

Comments

The structure of digits represents an obtuse angle. The vertex is an internal digit. In the graphic representation the points are connected by imaginary line segments from left to right.
For each k >= 11, there are 354 k-digit terms. - Michael S. Branicky, Aug 03 2022

Examples

			Illustration of the number 9753111:
  9 . . . . . .
  . . . . . . .
  . 7 . . . . .
  . . . . . . .
  . . 5 . . . .
  . . . . . . .
  . . . 3 . . .
  . . . . . . .
  . . . . 1 1 1
  . . . . . . .
		

Crossrefs

Programs

  • Python
    from itertools import count, islice
    def ok3(n):
        if n < 100: return False
        d = list(map(int, str(n)))
        m1, m2 = (d[1]-d[0], d[-1]-d[-2])
        return len({m1, m2}) == 2 and m1*m2 >= 0
    def agen():
        seeds = [k for k in range(100, 1000) if ok3(k)]
        for digits in count(4):
            yield from sorted(seeds)
            new, pow10 = set(), 10**(digits-1)
            for q in seeds:
                d = list(map(int, str(q)))
                e1, e2 = d[0] - (d[1]-d[0]), d[-1] + (d[-1]-d[-2])
                if 9 >= e1 > 0: new.add(e1*pow10 + q)
                if 9 >= e2 >= 0: new.add(10*q + e2)
            seeds = new
    print(list(islice(agen(), 54))) # Michael S. Branicky, Aug 03 2022

Extensions

a(49) and beyond from Michael S. Branicky, Aug 03 2022
Showing 1-10 of 24 results. Next