cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A178912 Number of generalized mountain numbers (see A134853) with n digits.

Original entry on oeis.org

9, 0, 240, 1380, 4578, 10794, 19494, 27912, 32195, 30085, 22748, 13820, 6656, 2486, 695, 137, 17, 1
Offset: 1

Views

Author

Nathaniel Johnston, Dec 29 2010

Keywords

Comments

The total number of generalized mountain numbers is 173247.

Examples

			a(18) = 1 because there is exactly one generalized mountain number with 18 digits: 123456789876543210
		

Crossrefs

A134941 Mountain numbers.

Original entry on oeis.org

1, 121, 131, 141, 151, 161, 171, 181, 191, 1231, 1241, 1251, 1261, 1271, 1281, 1291, 1321, 1341, 1351, 1361, 1371, 1381, 1391, 1421, 1431, 1451, 1461, 1471, 1481, 1491, 1521, 1531, 1541, 1561, 1571, 1581, 1591, 1621, 1631, 1641, 1651, 1671, 1681, 1691, 1721
Offset: 1

Views

Author

Omar E. Pol, Nov 22 2007

Keywords

Comments

For n > 1 the structure of digits represents a mountain. The first digit is 1. The last digit is 1. The first digits are in increasing order. The last digits are in decreasing order. The numbers only have one largest digit. This sequence is finite. The last term is 12345678987654321.
The total number of terms is 21846. - Hans Havermann, Nov 25 2007
A002450(8) + 1 = 21846. - Reinhard Zumkeller, May 17 2010
From Reinhard Zumkeller, May 25 2010: (Start)
A178333 is the characteristic function of mountain numbers: A178333(a(n)) = 1;
A178334(n) is the number of mountain numbers <= n;
A178052 and A178053 give sums of digits and digital roots of mountain numbers;
A178051(n) is the peak value of the n-th mountain number. (End)

Examples

			The A-number of this sequence (A134941) is itself a mountain number:
  . . . 9 . .
  . . . . . .
  . . . . . .
  . . . . . .
  . . . . . .
  . . 4 . 4 .
  . 3 . . . .
  . . . . . .
  1 . . . . 1
		

Crossrefs

Programs

  • Haskell
    import Data.List (elemIndices)
    a134941 n = a134941_list !! (n-1)
    a134941_list = elemIndices 1 a178333_list
    -- Reinhard Zumkeller, Oct 28 2001
    
  • Mathematica
    mountainQ[n_] := MatchQ[ IntegerDigits[n], {1, a___, b_, c___, 1} /; OrderedQ[{1, a, b}, Less] && OrderedQ[ Reverse[{b, c, 1}], Less]]; mountainQ[1] = True; Select[Range[2000], mountainQ] (* Jean-François Alcover, Jun 13 2012 *)
    Prepend[Union @@ ((FromDigits@#&/@Flatten[Table[Join[(k=Prepend[#,1]&/@
    Subsets[Range[2,#-1]])[[i]], {#}, (Reverse@# & /@k)[[j]]],
    {i, 2^(# - 2)}, {j, 2^(# - 2)}], 1])&/@Range[9]), 1] (* Hans Rudolf Widmer, Apr 30 2024 *)
  • Python
    from itertools import product
    def ups():
        d = "23456789"
        for b in product([0, 1], repeat=8):
            yield "1" + "".join(d[i]*b[i] for i in range(8))
    def downsfrom(apex):
        if apex < 3: yield "1"*int(apex==2); return
        d = "8765432"[-(apex-2):]
        for b in product([0, 1], repeat=len(d)):
            yield "".join(d[i]*b[i] for i in range(len(d))) + "1"
    def A134941(): # return full sequence as a list
        mountain_strs = (u+d for u in ups() for d in downsfrom(int(u[-1])))
        return sorted(int(ms) for ms in mountain_strs)
    print(A134941()[:45]) # Michael S. Branicky, Dec 31 2021

A135602 Right-angled numbers with an internal digit as the vertex.

Original entry on oeis.org

101, 121, 212, 232, 323, 343, 434, 454, 545, 565, 656, 676, 767, 787, 878, 898, 989, 1012, 1210, 1232, 2101, 2123, 2321, 2343, 3212, 3234, 3432, 3454, 4323, 4345, 4543, 4565, 5434, 5456, 5654, 5676, 6545, 6567, 6765, 6787, 7656, 7678, 7876, 7898, 8767, 8789, 8987
Offset: 1

Views

Author

Omar E. Pol, Dec 02 2007

Keywords

Comments

The structure of digits represents a right angle. The vertex is an internal digit. In the graphic representation the points are connected by imaginary line segments from left to right. This sequence is finite. The final term has 19 digits: 9876543210123456789.

Examples

			Illustration using the final term of this sequence:
  9 . . . . . . . . . . . . . . . . . 9
  . 8 . . . . . . . . . . . . . . . 8 .
  . . 7 . . . . . . . . . . . . . 7 . .
  . . . 6 . . . . . . . . . . . 6 . . .
  . . . . 5 . . . . . . . . . 5 . . . .
  . . . . . 4 . . . . . . . 4 . . . . .
  . . . . . . 3 . . . . . 3 . . . . . .
  . . . . . . . 2 . . . 2 . . . . . . .
  . . . . . . . . 1 . 1 . . . . . . . .
  . . . . . . . . . 0 . . . . . . . . .
		

Crossrefs

Programs

  • Python
    ups = list(tuple(range(i, j)) for i in range(9) for j in range(i+2, 11))
    s = set(L[::-1] + R[1:] for L in ups for R in ups if L[0] == R[0])
    s |= set(L[:-1] + R[::-1] for L in ups for R in ups if L[-1] == R[-1])
    afull = sorted(int("".join(map(str, t))) for t in s if t[0] != 0)
    print(afull[:47]) # Michael S. Branicky, Aug 02 2022

A135601 Acute-angled numbers with an internal digit as the vertex.

Original entry on oeis.org

102, 103, 104, 105, 106, 107, 108, 109, 120, 130, 131, 132, 140, 141, 142, 143, 150, 151, 152, 153, 154, 160, 161, 162, 163, 164, 165, 170, 171, 172, 173, 174, 175, 176, 180, 181, 182, 183, 184, 185, 186, 187, 190, 191, 192, 193, 194, 195
Offset: 1

Views

Author

Omar E. Pol, Dec 02 2007

Keywords

Comments

The structure of digits represents an acute angle. The vertex is an internal digit. In the graphic representation the points are connected by imaginary line segments from left to right. This sequence is finite. The final term has 14 digits: 98765432102468.

Examples

			Illustration using the final term of this sequence:
  9 . . . . . . . . . . . . .
  . 8 . . . . . . . . . . . 8
  . . 7 . . . . . . . . . . .
  . . . 6 . . . . . . . . 6 .
  . . . . 5 . . . . . . . . .
  . . . . . 4 . . . . . 4 . .
  . . . . . . 3 . . . . . . .
  . . . . . . . 2 . . 2 . . .
  . . . . . . . . 1 . . . . .
  . . . . . . . . . 0 . . . .
		

Crossrefs

Programs

  • Python
    progressions = set(tuple(range(i, j+1, d)) for i in range(10) for d in range(1, 10-i) for j in range(i+d, 10))
    s = set()
    for left in progressions:
        for right in progressions:
            dl, dr = left[1] - left[0], right[1] - right[0]
            if dl + dr > 2:
                if left[-1] == right[-1]: s.add(left[:-1] + right[::-1])
                if left[0] == right[0]: s.add(left[::-1] + right[1:])
    afull = sorted(int("".join(map(str, t))) for t in s if t[0] != 0)
    print(afull[:53]) # Michael S. Branicky, Aug 02 2022

Formula

If a(n) does not end in 0, then A004086(a(n)) is a term; if a(n) does not start with 9, then A061601(a(n)) is a term. - Michael S. Branicky, Aug 02 2022

A135603 Obtuse-angled numbers with an internal digit as the vertex.

Original entry on oeis.org

100, 110, 112, 113, 114, 115, 116, 117, 118, 119, 122, 124, 125, 126, 127, 128, 129, 133, 134, 136, 137, 138, 139, 144, 145, 146, 148, 149, 155, 156, 157, 158, 166, 167, 168, 169, 177, 178, 179, 188, 189, 199, 200, 211, 220, 221, 223, 224, 225, 226, 227, 228, 229, 233
Offset: 1

Views

Author

Omar E. Pol, Dec 02 2007

Keywords

Comments

The structure of digits represents an obtuse angle. The vertex is an internal digit. In the graphic representation the points are connected by imaginary line segments from left to right.
For each k >= 11, there are 354 k-digit terms. - Michael S. Branicky, Aug 03 2022

Examples

			Illustration of the number 9753111:
  9 . . . . . .
  . . . . . . .
  . 7 . . . . .
  . . . . . . .
  . . 5 . . . .
  . . . . . . .
  . . . 3 . . .
  . . . . . . .
  . . . . 1 1 1
  . . . . . . .
		

Crossrefs

Programs

  • Python
    from itertools import count, islice
    def ok3(n):
        if n < 100: return False
        d = list(map(int, str(n)))
        m1, m2 = (d[1]-d[0], d[-1]-d[-2])
        return len({m1, m2}) == 2 and m1*m2 >= 0
    def agen():
        seeds = [k for k in range(100, 1000) if ok3(k)]
        for digits in count(4):
            yield from sorted(seeds)
            new, pow10 = set(), 10**(digits-1)
            for q in seeds:
                d = list(map(int, str(q)))
                e1, e2 = d[0] - (d[1]-d[0]), d[-1] + (d[-1]-d[-2])
                if 9 >= e1 > 0: new.add(e1*pow10 + q)
                if 9 >= e2 >= 0: new.add(10*q + e2)
            seeds = new
    print(list(islice(agen(), 54))) # Michael S. Branicky, Aug 03 2022

Extensions

a(49) and beyond from Michael S. Branicky, Aug 03 2022

A135600 Angled numbers with an internal digit as the vertex.

Original entry on oeis.org

100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147
Offset: 1

Views

Author

Omar E. Pol, Dec 02 2007

Keywords

Comments

The structure of digits represents an angle. The vertex is an internal digit. In the graphic representation the points are connected by imaginary line segments from left to right. The last acute-angled number of this sequence has 14 digits: 98765432102468. The last right-angled number of this sequence has 19 digits: 9876543210123456789. All 3-digit numbers are terms of this sequence. Next terms are 1000, 1012, 1024, 1036, 1048, 1110, 1111, 1112, 1113, 1114, ....
For each k >= 20, there are 363 k-digit terms: 354 obtuse-angled and 9 straight-angled.- Michael S. Branicky, Aug 03 2022

Examples

			The acute-angled number 12342 (see A135601):
  . . . . .
  . . . 4 .
  . . 3 . .
  . 2 . . 2
  1 . . . .
The right-angled number 12343 (see A135602):
  . . . . .
  . . . 4 .
  . . 3 . 3
  . 2 . . .
  1 . . . .
The obtuse-angled number 12344 (see A135603):
  . . . . .
  . . . 4 4
  . . 3 . .
  . 2 . . .
  1 . . . .
The straight-angled (or straight-line) number 12345 (see A135643):
  . . . . 5
  . . . 4 .
  . . 3 . .
  . 2 . . .
  1 . . . .
		

Crossrefs

Programs

  • PARI
    \\ See PARI link. David A. Corneth, Aug 02 2022
    
  • Python
    from itertools import count, islice
    def agen():
        seeds = [k for k in range(100, 1000)]
        for digits in count(4):
            yield from sorted(seeds)
            new, pow10 = set(), 10**(digits-1)
            for q in seeds:
                d = list(map(int, str(q)))
                e1, e2 = d[0] - (d[1]-d[0]), d[-1] + (d[-1]-d[-2])
                if 9 >= e1 > 0: new.add(e1*pow10 + q)
                if 9 >= e2 >= 0: new.add(10*q + e2)
            seeds = new
    print(list(islice(agen(), 50))) # Michael S. Branicky, Aug 03 2022

A167853 Generalized mountain primes.

Original entry on oeis.org

2, 3, 5, 7, 131, 151, 163, 173, 181, 191, 193, 197, 241, 251, 263, 271, 281, 283, 293, 353, 373, 383, 397, 461, 463, 487, 491, 563, 571, 587, 593, 673, 683, 691, 787, 797, 1231, 1283, 1291, 1297, 1321, 1361, 1373, 1381, 1451, 1453, 1471
Offset: 1

Views

Author

Omar E. Pol, Nov 13 2009, Nov 15 2009

Keywords

Comments

Primes in A134853. This sequence is finite because A134853 is.
Superset of A134951, mountain primes.
Question: How many terms are in this sequence?
The last term is a(7145) = 134567897654321. - Giovanni Resta, Mar 19 2013

Examples

			Illustration of 136973 as a generalized mountain prime:
. . . 9 . .
. . . . . .
. . . . 7 .
. . 6 . . .
. . . . . .
. . . . . .
. 3 . . . 3
. . . . . .
1 . . . . .
		

Crossrefs

Extensions

More terms provided. Harvey P. Dale, Aug 19 2010
a(37)-a(47) corrected by Giovanni Resta, Mar 19 2013

A173070 Palindromic mountain numbers.

Original entry on oeis.org

1, 121, 131, 141, 151, 161, 171, 181, 191, 12321, 12421, 12521, 12621, 12721, 12821, 12921, 13431, 13531, 13631, 13731, 13831, 13931, 14541, 14641, 14741, 14841, 14941, 15651, 15751, 15851, 15951, 16761, 16861, 16961, 17871, 17971, 18981
Offset: 1

Views

Author

Omar E. Pol, Feb 09 2010

Keywords

Comments

There are 256 terms, the last of which is 12345678987654321. - Michael S. Branicky, Aug 04 2022

Examples

			13731 is in the sequence because it is a palindrome (A002113) and it is also a mountain number (A134941).
. . . . .
. . . . .
. . 7 . .
. . . . .
. . . . .
. . . . .
. 3 . 3 .
. . . . .
1 . . . 1
		

Crossrefs

Programs

  • Python
    from itertools import chain, combinations as combs
    def c(s): return s[0] == s[-1] == 1 and s == s[::-1]
    ups = list(chain.from_iterable(combs(range(10), r) for r in range(2, 11)))
    s = set(L[:-1] + R[::-1] for L in ups for R in ups if L[-1] == R[-1])
    afull = [1] + sorted(int("".join(map(str, t))) for t in s if c(t))
    print(afull[:40]) # Michael S. Branicky, Aug 04 2022

A183086 Generalized canyon numbers.

Original entry on oeis.org

101, 102, 103, 104, 105, 106, 107, 108, 109, 201, 202, 203, 204, 205, 206, 207, 208, 209, 212, 213, 214, 215, 216, 217, 218, 219, 301, 302, 303, 304, 305, 306, 307, 308, 309, 312, 313, 314, 315, 316, 317, 318, 319, 323, 324, 325, 326, 327, 328, 329, 401, 402, 403, 404, 405, 406, 407, 408, 409, 412
Offset: 1

Views

Author

Omar E. Pol, Jan 19 2011

Keywords

Comments

Supersequence of A134970. The structure of digits represents a canyon (a deep valley between cliffs). The first digits are in decreasing order. The last digits are in increasing order. There is only one smaller digit which represents the bottom of the canyon. But the restriction that both cliffs are at same level (first digit equal to the final digit) is dropped here.
This sequence is finite. The final term is 9876543210123456789.
Question: How many terms are there in this sequence?
There are 347489 terms in the sequence. They may be generated in seconds using the posted Python program. - Michael S. Branicky, Aug 02 2022

Examples

			Illustration of 751378 as a generalized canyon number:
  . . . . . .
  . . . . . 8
  7 . . . 7 .
  . . . . . .
  . 5 . . . .
  . . . . . .
  . . . 3 . .
  . . . . . .
  . . 1 . . .
  . . . . . .
		

Crossrefs

Programs

  • Python
    from itertools import chain, combinations as combs
    ups = list(chain.from_iterable(combs(range(10), r) for r in range(2, 11)))
    s = set(L[::-1] + R[1:] for L in ups for R in ups if L[0] == R[0])
    afull = sorted(int("".join(map(str, t))) for t in s)
    print(afull[:60]) # Michael S. Branicky, Aug 02 2022
Showing 1-9 of 9 results.