cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A135494 Triangle read by rows: row n gives coefficients C(n,j) for a Sheffer sequence (binomial-type) with lowering operator (D-1)/2 + T{ (1/2) * exp[(D-1)/2] } where T(x) is Cayley's Tree function.

Original entry on oeis.org

1, -1, 1, -1, -3, 1, -1, -1, -6, 1, -1, 5, 5, -10, 1, -1, 19, 30, 25, -15, 1, -1, 49, 49, 70, 70, -21, 1, -1, 111, -70, -91, 70, 154, -28, 1, -1, 237, -883, -1218, -861, -126, 294, -36, 1, -1, 491, -4410, -4495, -3885, -2877, -840, 510, -45, 1
Offset: 1

Views

Author

Tom Copeland, Feb 08 2008

Keywords

Comments

The lowering (or delta) operator for these polynomials is L = (D-1)/2 + T{ (1/2) * exp[(D-1)/2] } and the raising operator is R = 2t * { 1 - T[ (1/2) * exp[(D-1)/2] ] }, where T(x) is the tree function of A000169. In addition, L = E(D,1) = A(D) where E(x,t) is the e.g.f. of A134991 and A(x) is the e.g.f. of A000311, so L = sum(j=1,...) A000311(j) * D^j / j! also. The polynomials and operators can be generalized through A134991.
Also the Bell transform of A153881. For the definition of the Bell transform see A264428. - Peter Luschny, Jan 27 2016
Exponential Riordan array [2 - exp(x), 1 + 2*x - exp(x)] belonging to the derivative subgroup of the exponential Riordan group. See the example section for a factorization of this array as an infinite product of arrays. - Peter Bala, Feb 13 2025

Examples

			The triangle begins:
  [1]  1;
  [2] -1,  1;
  [3] -1, -3,  1;
  [4] -1, -1, -6,   1;
  [5] -1,  5,  5, -10,   1;
  [6] -1, 19, 30,  25, -15,   1;
  [7] -1, 49, 49,  70,  70, -21, 1.
P(3,t) = [B(.,-t) + 2t]^3 = B(3,-t) + 3B(2,-t)2t + 3B(1,-t)(2t)^2 + (2t)^3 = (-t + 3t^2 - t^3) + 3(-t + t^2)(2t) + 3(-t)(2t)^2 + (2t)^3 = -t - 3t + t^3.
From _Peter Bala_, Feb 13 2025: (Start)
The array factorizes as an infinite product of lower triangular arrays:
  /  1               \    / 1             \ / 1             \ / 1             \
  | -1   1           |   | -1  1          | | 0 -1          | | 0  1          |
  | -1  -3   1       | = | -1 -2   1      | | 0 -1  1       | | 0  0  1       | ...
  | -1  -1  -6   1   |   | -1 -3  -3  1   | | 0 -1 -2  1    | | 0  0 -1  1    |
  | -1   5   5 -10  1|   | -1 -4  -6 -4  1| | 0 -1 -3 -3  1 | | 0  0 -1 -2  1 |
  |...               |   |...             | |...            | |...            |
where the first array in the product on the right-hand side is A154926. (End)
		

References

  • S. Roman, The Umbral Calculus, Academic Press, New York, 1984.
  • G. Rota, Finite Operator Calculus, Academic Press, New York, 1975.

Crossrefs

Cf. A298673 for the inverse matrix.

Programs

  • Maple
    # The function BellMatrix is defined in A264428.
    # Adds (1,0,0,0, ..) as column 0.
    BellMatrix(n -> `if`(n=0,1,-1), 9); # Peter Luschny, Jan 27 2016
  • Mathematica
    max = 8; s = Series[Exp[t*(-Exp[x]+2*x+1)], {x, 0, max}, {t, 0, max}] // Normal; t[n_, k_] := SeriesCoefficient[s, {x, 0, n}, {t, 0, k}]*n!; Table[t[n, k], {n, 0, max}, {k, 1, n}] // Flatten (* Jean-François Alcover, Apr 23 2014 *)
    BellMatrix[f_Function, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];
    rows = 12;
    M = BellMatrix[If[# == 0, 1, -1] &, rows];
    Table[M[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* Jean-François Alcover, Jun 24 2018, after Peter Luschny *)

Formula

Row polynomials are P(n,t) = Sum_{j=1..n} C(n,j) * t^j = [ Bell(.,-t) + 2t ]^n, umbrally, where Bell(j,t) are the Touchard/Bell/exponential polynomials described in A008277, with P(0,t) = 1.
E.g.f.: exp{ t * [ -exp(x) + 2x + 1] } and [ P(.,t) + P(.,s) ]^n = P(n,s+t).
The lowering operator gives L[P(n,t)] = n * P(n-1,t) = (D-1)/2 * P(n,t) + Sum_{j>=1} j^(j-1) * 2^(-j) / j! * exp(-j/2) * P(n,t + j/2).
The raising operator gives R[P(n,t)] = P(n+1,t) = 2t * { P(n,t) - Sum_{j>=1} j^(j-1) * 2^(-j) / j! * exp(-j/2) * P(n,t + j/2) } .
Therefore P(n+1,t) = 2t * { [ (1+D)/2 * P(n,t) ] - n * P(n-1,t) }.
P(n,1) = (-1)^n * A074051(n) and P(n,-1) = A126617(n).
See Rota, Roman, Mathworld or Wikipedia on Sheffer sequences and umbral calculus for more formulas, including expansion theorems.
From Tom Copeland, Jan 20 2018: (Start)
Define Q(n,z;w) = [Bell(.,w)+z]^n. Then Q(n,z;w) are a sequence of Appell polynomials with e.g.f. exp[(exp(t)-1+z)*w], lowering operator D = d/dz, and raising operator R = z + w*exp(D), and exp[(exp(D)-1)w] z^n = exp[Bell(.,w)D] z^n = Q(n,z;w) = e^(-w) (w d/dw + z)^n e^w = e^(-w) exp(a.w) = exp[(a. - 1)w] with (a.)^k = a_k = (k + z)^n and (a. - 1)^m = sum{k = 0,..,m} (-1)^k a^(m-k). Then P(n,t) = Q(n,2t;-t).
For example, exp[(a. - 1)w] = (a. - 1)^0 + (a. - 1)^1 w + (a. - 1)^2 w^2/2! + ... = a_0 + (a_1 - a_0) w + (a_2 - 2a_1 + a_0) w^2/2! + ... = z^n + [(1+z)^n - z^n] w + [(2+z)^n - 2(1+z)^n + z^n] w^2/2! + ... . (End)
T(n+1, k) = Sum_{i = 0..n} s(n,k)*binomial(n, i)*T(i, k-1), where s(n,i) = 1 if i = n else -1. - Peter Bala, Feb 13 2025

Extensions

More terms from Vincenzo Librandi, Jan 21 2018