cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A135516 a(0)=1; a(n) = (Product_{i=1..n} prime(i)^2) - 1, where prime(i) is the i-th prime.

Original entry on oeis.org

1, 3, 35, 899, 44099, 5336099, 901800899, 260620460099, 94083986096099, 49770428644836899, 41856930490307832899, 40224510201185827416899, 55067354465423397733736099, 92568222856376731590410384099
Offset: 0

Views

Author

Ctibor O. Zizka, Feb 19 2008

Keywords

Comments

Sequence can be generalized: a(0)=1; a(n) = (Product_{i=1..n} prime(i)^r) - 1, where prime(i) is the i-th prime.

Crossrefs

Programs

  • Maple
    A002110 := proc(n) mul(ithprime(i),i=1..n) ; end:
    A135516 := proc(n) if n =0 then 1; else (A002110(n)+1)*(A002110(n)-1) ; fi ; end: seq(A135516(n),n=0..20) ; # R. J. Mathar, Feb 28 2008
  • Mathematica
    Join[{1},Rest[#-1&/@FoldList[Times,1,Prime[Range[15]]^2]]] (* Harvey P. Dale, Oct 02 2011 *)
    Join[{1}, Table[Product[Prime[i]^(2), {i,1,n}] - 1, {n,1,15}]] (* G. C. Greubel, Oct 17 2016 *)
  • PARI
    a(n) = if(n==0, 1, prod(k=1, n, prime(k)^2) - 1); \\ Michel Marcus, Oct 17 2016

Formula

a(n) = A061742(n-1)-1 = (A002110(n)+1)*(A002110(n)-1) for n>1. - R. J. Mathar, Feb 28 2008

Extensions

Offset corrected by Georg Fischer, Jun 18 2021