cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A135521 a(n) = 2^(A091090(n)) - 1.

Original entry on oeis.org

1, 1, 3, 1, 3, 1, 7, 1, 3, 1, 7, 1, 3, 1, 15, 1, 3, 1, 7, 1, 3, 1, 15, 1, 3, 1, 7, 1, 3, 1, 31, 1, 3, 1, 7, 1, 3, 1, 15, 1, 3, 1, 7, 1, 3, 1, 31, 1, 3, 1, 7, 1, 3, 1, 15, 1, 3, 1, 7, 1, 3, 1, 63, 1, 3, 1, 7, 1, 3, 1, 15, 1, 3, 1, 7, 1, 3, 1, 31, 1, 3, 1, 7, 1, 3, 1, 15, 1, 3, 1, 7, 1, 3, 1, 63, 1, 3, 1, 7, 1
Offset: 1

Views

Author

N. J. A. Sloane, based on a message from Guy Steele and Don Knuth, Mar 01 2008

Keywords

Examples

			From _Omar E. Pol_, Mar 11 2011: (Start)
Can be written as a triangle with 2^k entries on each row:
1,
1,3,
1,3,1,7,
1,3,1,7,1,3,1,15,
1,3,1,7,1,3,1,15,1,3,1,7,1,3,1,31,
1,3,1,7,1,3,1,15,1,3,1,7,1,3,1,31,1,3,1,7,1,3,1,15,1,3, 1,7,1,3,1,63,
Last term of rows are 2^(k+1) - 1. It appears that the row sums give A001787.
(End)
		

Crossrefs

This is Guy Steele's sequence GS(2, 6) (see A135416).
Cf. A000225, A001787. - Omar E. Pol, Mar 11 2011

Programs

  • Maple
    GS(2,6,200); [see A135416].
    # Input n is the number of rows.
    A135521_list := proc(n) local i,k,NimSum;
    NimSum := proc(a,b) option remember; local i;
    zip((x,y)->`if`(x<>y,1,0),convert(a,base,2),convert(b,base,2),0);
    add(`if`(%[i]=1,2^(i-1),0),i=1..nops(%)) end:
    seq(seq(NimSum(i,i+1),i=0..2^k-1),k=0..n) end:
    A135521_list(5); # Peter Luschny, May 31 2011
  • Mathematica
    Flatten[Table[BitXor[i, i + 1], {k, 0, 10}, {i, 0, -1 + 2^k}]] (* Peter Luschny, May 31 2011 *)
  • PARI
    A091090(n) = { my(m=valuation(n+1, 2)); if(n>>m, m+1, max(m, 1)); }; \\ From A091090
    A135521(n) = ((2^A091090(n))-1); \\ Antti Karttunen, Sep 27 2018

Formula

G.f. A(x) satisfies: A(x) = x/(1 - x) + 2*x*A(x^2). - Ilya Gutkovskiy, Dec 18 2019