A135526 Number of sums payable using exactly n banknotes of denominations 1, 5, 10, 20, 50, 100 (change allowable).
1, 6, 33, 95, 188, 288, 388, 488, 588, 688, 788, 888, 988, 1088, 1188, 1288, 1388, 1488, 1588, 1688, 1788, 1888, 1988, 2088, 2188, 2288, 2388, 2488, 2588, 2688, 2788, 2888, 2988, 3088, 3188, 3288, 3388, 3488, 3588, 3688, 3788, 3888, 3988, 4088, 4188, 4288
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (2,-1).
Programs
-
Mathematica
Join[{1,6,33,95}, LinearRecurrence[{2,-1},{188,288},25]] (* or *) Join[{1,6,33,95}, Table[100*n -212, {n,4,25}]] (* G. C. Greubel, Oct 17 2016 *)
-
PARI
a(n)=if(n>3,100*n-212,[1,6,33,95][n+1]) \\ Charles R Greathouse IV, Jun 23 2024
Formula
a(n) = 100*n - 212 for n>=4.
From G. C. Greubel, Oct 17 2016: (Start)
a(n) = 2*a(n-1) - a(n-2), for n >= 4.
G.f.: (1 + 4*x + 22*x^2 + 35*x^3 + 31*x^4 + 7*x^5)/(1-x)^2.
E.g.f.: (1/6)*( 1278 + 708*x + 135*x^2 + 7*x^3 - 24*(53 - 25*x)*exp(x) ). (End)
Extensions
Extended by Max Alekseyev, Mar 04 2009
Comments