cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A135528 1, then repeat 1,0.

Original entry on oeis.org

1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0
Offset: 1

Views

Author

N. J. A. Sloane, based on a message from Guy Steele and Don Knuth, Mar 01 2008

Keywords

Comments

This is Guy Steele's sequence GS(2, 1) (see A135416).
2-adic expansion of 1/3 (right to left): 1/3 = ...01010101010101011. - Philippe Deléham, Mar 24 2009
Also, with offset 0, parity of A036467(n-1). - Omar E. Pol, Mar 17 2015
Appears to be the Gilbreath transform of 1,2,3,5,7,11,13,... (A008578). (This is essentially the same as the Gilbreath conjecture, see A036262.) - N. J. A. Sloane, May 08 2023

Examples

			G.f. = x + x^2 + x^4 + x^6 + x^8 + x^10 + x^12 + x^14 + x^16 + x^18 + x^20 + ...
		

Crossrefs

Programs

  • Haskell
    a135528 n = a135528_list !! (n-1)
    a135528_list = concat $ iterate ([1,0] *) [1]
    instance Num a => Num [a] where
    fromInteger k = [fromInteger k]
       (p:ps) + (q:qs) = p + q : ps + qs
       ps + qs         = ps ++ qs
       (0:ps) * qs         = 0 : ps * qs
       (p:ps) * qs'@(q:qs) = p * q : ps * qs' + [p] * qs
        *                = []
    -- Reinhard Zumkeller, Apr 02 2011
  • Maple
    GS(2,1,200); [see A135416].
  • Mathematica
    Prepend[Table[Mod[n + 1, 2], {n, 2, 60}], 1] (* Michael De Vlieger, Mar 17 2015 *)
    PadRight[{1},120,{0,1}] (* Harvey P. Dale, Apr 23 2024 *)

Formula

G.f.: x*(1+x-x^2)/(1-x^2). - Philippe Deléham, Feb 08 2012
G.f.: x / (1 - x / (1 + x / (1 + x / (1 - x)))). - Michael Somos, Apr 02 2012
a(n) = A049711(n+2) mod 2. - Ctibor O. Zizka, Jan 28 2019