cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A135539 Triangle read by rows: T(n,k) = number of divisors of n that are >= k.

Original entry on oeis.org

1, 2, 1, 2, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 1, 4, 3, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 4, 3, 2, 2, 1, 1, 1, 1, 3, 2, 2, 1, 1, 1, 1, 1, 1, 4, 3, 2, 2, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 6, 5, 4, 3, 2, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Gary W. Adamson, Oct 30 2007

Keywords

Comments

Row sums give A000203.
Left border is A000005.

Examples

			First few rows of the triangle:
  1;
  2, 1;
  2, 1, 1;
  3, 2, 1, 1;
  2, 1, 1, 1, 1;
  4, 3, 2, 1, 1, 1;
  2, 1, 1, 1, 1, 1, 1;
  4, 3, 2, 2, 1, 1, 1, 1;
  3, 2, 2, 1, 1, 1, 1, 1, 1;
  4, 3, 2, 2, 2, 1, 1, 1, 1, 1;
  2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1;
  6, 5, 4, 3, 2, 2, 1, 1, 1, 1, 1, 1;
  ...
		

Crossrefs

Programs

  • Maple
    with(numtheory);
    f1:=proc(n) local d,s1,t1,t2,i;
    d:=tau(n);
    s1:=sort(divisors(n));
    t1:=Array(1..n,0);
    for i from 1 to d do t1[n-s1[i]+1]:=1; od:
    t2:=PSUM(convert(t1,list));
    [seq(t2[n+1-i],i=1..n)];
    end proc;
    for n from 1 to 15 do lprint(f1(n)); od: # N. J. A. Sloane, Nov 09 2018
  • Mathematica
    T[n_, k_] := DivisorSum[n, Boole[# >= k]&];
    Table[T[n, k], {n, 1, 15}, {k, 1, n}] // Flatten (* Jean-François Alcover, Feb 15 2023 *)
  • PARI
    row(n) = my(d=divisors(n)); vector(n, k, #select(x->(x>=k), d)); \\ Michel Marcus, Jul 23 2022

Formula

Triangle read by rows, partial sums of A051731 starting from the right. A051731 as a lower triangular matrix times an all 1's lower triangular matrix.
From Seiichi Manyama, Jan 07 2023: (Start)
G.f. of column k: Sum_{j>=1} x^(k*j)/(1 - x^j).
G.f. of column k: Sum_{j>=k} x^j/(1 - x^j). (End)
Sum_{j=1..n} T(j, k) ~ n * (log(n) + 2*gamma - 1 - H(k-1)), where gamma is Euler's constant (A001620), and H(k) = A001008(k)/A002805(k) is the k-th harmonic number. - Amiram Eldar, Jan 08 2024

Extensions

Clearer definition from N. J. A. Sloane, Nov 09 2018