A135576 Numbers whose binary expansion has only the digit "1" as first, central and final digit.
1, 7, 21, 73, 273, 1057, 4161, 16513, 65793, 262657, 1049601, 4196353, 16781313, 67117057, 268451841, 1073774593, 4295032833, 17180000257, 68719738881, 274878431233, 1099512676353, 4398048608257, 17592190238721
Offset: 1
Examples
-------------------------------------- n ........ a(n) ..... a(n) in base 2 -------------------------------------- 1 .......... 1 ............ 1 2 .......... 7 ........... 111 3 ......... 21 .......... 10101 4 ......... 73 ......... 1001001 5 ........ 273 ........ 100010001 6 ....... 1057 ....... 10000100001 7 ....... 4161 ...... 1000001000001 8 ...... 16513 ..... 100000010000001 9 ...... 65793 .... 10000000100000001 10 .... 262657 ... 1000000001000000001
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (7,-14,8).
Programs
-
Mathematica
nxt[n_]:=Module[{l=Floor[IntegerLength[n,2]/2]},FromDigits[Join[{1},Table[0,{l}],{1},Table[0,{l}],{1}],2]] NestList[nxt,1,25] (* Harvey P. Dale, Dec 29 2010 *) Join[{1},LinearRecurrence[{7,-14,8},{7,21,73},30]] (* Harvey P. Dale, Mar 22 2015 *)
-
PARI
a(n)=if(n--,4^n+2^n+1,1) \\ Charles R Greathouse IV, Dec 28 2012
Formula
a(1)=1. If n>1 then a(n) = A001576(n-1).
G.f.: -x*(16*x^3-14*x^2+1) / ((x-1)*(2*x-1)*(4*x-1)). - Colin Barker, Sep 16 2013
Comments