A001576
a(n) = 1^n + 2^n + 4^n.
Original entry on oeis.org
3, 7, 21, 73, 273, 1057, 4161, 16513, 65793, 262657, 1049601, 4196353, 16781313, 67117057, 268451841, 1073774593, 4295032833, 17180000257, 68719738881, 274878431233, 1099512676353, 4398048608257, 17592190238721, 70368752566273, 281474993487873, 1125899940397057
Offset: 0
- T. D. Noe, Table of n, a(n) for n = 0..200
- John Elias, Illustration of Initial Terms: 1/4 Sierpinski Square Curve
- Andy Liu, West German Mathematical Olympiad 1982 - Second round, Problem 4, Crux Mathematicorum, p. 105, Vol. 12, May. 86.
- Index entries for linear recurrences with constant coefficients, signature (7,-14,8).
A135577
Numbers that have only the digit "1" as first, central and final digit. For numbers with 5 or more digits the rest of digits are "0".
Original entry on oeis.org
1, 111, 10101, 1001001, 100010001, 10000100001, 1000001000001, 100000010000001, 10000000100000001, 1000000001000000001, 100000000010000000001, 10000000000100000000001, 1000000000001000000000001, 100000000000010000000000001, 10000000000000100000000000001
Offset: 1
----------------------------
n ............ a(n)
----------------------------
1 ............. 1
2 ............ 111
3 ........... 10101
4 .......... 1001001
5 ......... 100010001
6 ........ 10000100001
7 ....... 1000001000001
8 ...... 100000010000001
9 ..... 10000000100000001
10 ... 1000000001000000001
-
Join[{1}, LinearRecurrence[{111, -1110, 1000}, {111, 10101, 1001001}, 25]] (* G. C. Greubel, Oct 19 2016 *)
Join[{1},Table[FromDigits[Join[{1},PadRight[{},n,0],{1},PadRight[{},n,0],{1}]],{n,0,10}]] (* Harvey P. Dale, Aug 15 2022 *)
-
Vec(-x*(2000*x^3-1110*x^2+1)/((x-1)*(10*x-1)*(100*x-1)) + O(x^100)) \\ Colin Barker, Sep 16 2013
A144864
a(n) = (4*16^(n-1)-1)/3.
Original entry on oeis.org
1, 21, 341, 5461, 87381, 1398101, 22369621, 357913941, 5726623061, 91625968981, 1466015503701, 23456248059221, 375299968947541, 6004799503160661, 96076792050570581, 1537228672809129301, 24595658764946068821, 393530540239137101141, 6296488643826193618261, 100743818301219097892181
Offset: 1
Cf.
A001025,
A002450,
A013776,
A056830,
A084241,
A088556,
A094028,
A098704,
A131865,
A135576,
A144863,
A153497.
-
[16^n/12-1/3: n in [1..20]]; // Vincenzo Librandi, Aug 03 2011
-
Table[1/3 (-1 + 16^(n - 1)) + 16^(n - 1), {n, 1, 17}] (* Artur Jasinski, Sep 25 2008 *)
LinearRecurrence[{17,-16},{1,21},20] (* Harvey P. Dale, Jun 29 2022 *)
-
vector(66,n,(4*16^(n-1)-1)/3) \\ Joerg Arndt, Aug 19 2014
A153497
a(n) is the number whose binary expansion is A153498(n).
Original entry on oeis.org
1, 7, 21, 73, 341, 1453, 5461, 21157, 87381, 354997, 1398101, 5548693, 22369621, 89828053, 357913941, 1428859477, 5726623061, 22928862037, 91625968981, 366324918613, 1466015503701, 5865493671253, 23456248059221, 93813538989397
Offset: 1
-
LinearRecurrence[{5,-14,50,-56,80,-64},{1,7,21,73,341,1453},30] (* Harvey P. Dale, Nov 21 2012 *)
A153499
a(n) is the number whose binary expansion is A153500(n).
Original entry on oeis.org
1, 5, 17, 85, 365, 1365, 5285, 21845, 88757, 349525, 1387157, 5592405, 22457045, 89478485, 357214805, 1431655765, 5732215637, 22906492245, 91581229397, 366503875925, 1466373418325, 5864062014805, 23453384746325, 93824992236885
Offset: 1
A144863
Start with 1, then at each step prepend 10 and append 01.
Original entry on oeis.org
1, 10101, 101010101, 1010101010101, 10101010101010101, 101010101010101010101, 1010101010101010101010101, 10101010101010101010101010101, 101010101010101010101010101010101
Offset: 1
-
a = {}; k = {1}; Do[x = FromDigits[k, 2]; AppendTo[a, FromDigits[RealDigits[x, 2]]]; AppendTo[k, 0]; AppendTo[k, 1]; PrependTo[k, 0]; PrependTo[k, 1], {n, 1, 100}];
Table[FromDigits[RealDigits[1/12 (-4 + 16^n), 2]], {n, 1, 10}]
a = {}; k = 1; Do[AppendTo[a, k]; k = 10000 k + 101, {n, 1, 10}]; a
Table[1/99 (-1 + 100^(-1 + 2 n)), {n, 1, 20}]
LinearRecurrence[{10001,-10000},{1,10101},20] (* Harvey P. Dale, Aug 22 2014 *)
A376227
a(n) = Product_{k=1..n} (8^k - 1)/(2^k - 1) for n >= 1 with a(0) = 1.
Original entry on oeis.org
1, 7, 147, 10731, 2929563, 3096548091, 12884736606651, 212765655585627963, 13998490777945220569659, 3676801592262757799164923963, 3859174628040582848761303356488763, 16194459027901983959148041623911690081339, 271764285812898926139442499827890355613945218107
Offset: 0
G.f.: A(x) = 1 + 7*x + 147*x^2 + 10731*x^3 + 2929563*x^4 + 3096548091*x^5 + 12884736606651*x^6 + 212765655585627963*x^7 + ...
where the coefficients a(n) of x^n begin
a(0) = 1,
a(1) = 1 * 7,
a(2) = 1 * 7 * 21,
a(3) = 1 * 7 * 21 * 73,
a(4) = 1 * 7 * 21 * 73 * 273,
a(5) = 1 * 7 * 21 * 73 * 273 * 1057,
...
-
{a(n) = (1/3) * prod(k=0,n, 1 + 2^k + 2^(2*k))}
for(n=0,12,print1(a(n),", "))
Showing 1-7 of 7 results.
Comments