cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A135653 Divisors of 496 (the 3rd perfect number), written in base 2.

Original entry on oeis.org

1, 10, 100, 1000, 10000, 11111, 111110, 1111100, 11111000, 111110000
Offset: 1

Views

Author

Omar E. Pol, Feb 23 2008, Mar 03 2008

Keywords

Comments

The number of divisors of the third perfect number is equal to 2*A000043(3)=A061645(3)=10.

Examples

			The structure of divisors of 496 (see A018487)
-------------------------------------------------------------------------
n ... Divisor . Formula ....... Divisor written in base 2 ...............
-------------------------------------------------------------------------
1)......... 1 = 2^0 ........... 1
2)......... 2 = 2^1 ........... 10
3)......... 4 = 2^2 ........... 100
4)......... 8 = 2^3 ........... 1000
5)........ 16 = 2^4 ........... 10000 ... (The 3rd superperfect number)
6)........ 31 = 2^5 - 2^0 ..... 11111 ... (The 3rd Mersenne prime)
7)........ 62 = 2^6 - 2^1 ..... 111110
8)....... 124 = 2^7 - 2^2 ..... 1111100
9)....... 248 = 2^8 - 2^3 ..... 11111000
10)...... 496 = 2^9 - 2^4 ..... 111110000 ... (The 3rd perfect number)
		

Crossrefs

For more information see A018487 (Divisors of 496). Cf. A000043, A000079, A000396, A000668, A019279, A061645, A061652.

Programs

  • Mathematica
    FromDigits[IntegerDigits[#,2]]&/@Divisors[496] (* Harvey P. Dale, Dec 02 2018 *)
  • PARI
    apply(n->fromdigits(binary(n)), divisors(496)) \\ Charles R Greathouse IV, Jun 21 2017

Formula

a(n)=A018487(n), written in base 2. Also, for n=1 .. 10: If n<=(A000043(3)=5) then a(n) is the concatenation of the digit "1" and n-1 digits "0" else a(n) is the concatenation of A000043(3)=5 digits "1" and (n-1-A000043(3)) digits "0".