A135685 Triangular sequence of the coefficients of the numerator of the rational recursive sequence for tan(n*y) with x = tan(y).
0, 0, 1, 0, -2, 0, -3, 0, 1, 0, 4, 0, -4, 0, 5, 0, -10, 0, 1, 0, -6, 0, 20, 0, -6, 0, -7, 0, 35, 0, -21, 0, 1, 0, 8, 0, -56, 0, 56, 0, -8, 0, 9, 0, -84, 0, 126, 0, -36, 0, 1, 0, -10, 0, 120, 0, -252, 0, 120, 0, -10, 0, -11, 0, 165, 0, -462, 0, 330, 0, -55, 0, 1
Offset: 0
Examples
Triangle starts: 0; 0, 1; 0, -2; 0, -3, 0, 1; 0, 4, 0, -4; 0, 5, 0, -10, 0, 1; 0, -6, 0, 20, 0, -6; 0, -7, 0, 35, 0, -21, 0, 1; 0, 8, 0, -56, 0, 56, 0, -8; 0, 9, 0, -84, 0, 126, 0, -36, 0, 1; 0, -10, 0, 120, 0, -252, 0, 120, 0, -10; 0, -11, 0, 165, 0, -462, 0, 330, 0, -55, 0, 1;
Links
- Robert Israel, Table of n, a(n) for n = 0..10082
- Clark Kimberling, Polynomials associated with reciprocation, JIS 12 (2009) 09.3.4, section 5.
Programs
-
Maple
g[0]:= 0: g[1]:= x; for n from 2 to 20 do g[n]:= expand(-2*(-1)^n*g[n-1]+(x^2+1)*g[n-2]) od: 0, seq(seq(coeff(g[n],x,j),j=0..degree(g[n])),n=1..20); # Robert Israel, Sep 14 2014
-
Mathematica
p[n_, x_]:= p[n, x]= If[n<2, n*x, (p[n-1, x] + x)/(1 - x*p[n-1, x])]; Table[CoefficientList[Numerator[FullSimplify[p[n, x]]], x], {n,0,12}]//Flatten
-
Sage
def p(n, x): return n*x if (n<2) else 2*(-1)^(n+1)*p(n-1,x) + (1+x^2)*p(n-2,x) def A135685(n,k): return ( p(n,x) ).series(x,n+1).list()[k] flatten([[A135685(n,k) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Nov 26 2021
Formula
p(n, x) = (p(n-1, x) + x)/(1 - x*p(n-1, x)), with p(0, x) = 0, p(1, x) = x.
Sum_{j} T(n,j)*x^j = g(n,x) where g(0,x) = 0, g(1,x) = x, g(n,x) = -2*(-1)^n*g(n-1,x) + (x^2+1)*g(n-2,x). - Robert Israel, Sep 14 2014
Extensions
Prepended first term and offset corrected by James Burling, Sep 14 2014
Comments