A135708 Minimal total number of edges in a polyhex consisting of n hexagonal cells.
6, 11, 15, 19, 23, 27, 30, 34, 38, 41, 45, 48, 52, 55, 59, 62, 66, 69, 72, 76, 79, 83, 86, 89, 93, 96, 99, 103, 106, 109, 113, 116, 119, 123, 126, 129, 132, 136, 139, 142, 146, 149, 152, 155, 159, 162, 165, 168, 172, 175, 178, 181, 185, 188, 191, 194, 198, 201, 204, 207, 210
Offset: 1
Keywords
References
- Y. S. Kupitz, "On the maximal number of appearances of the minimal distance among n points in the plane", in Intuitive geometry: Proceedings of the 3rd international conference held in Szeged, Hungary, 1991; Amsterdam: North-Holland: Colloq. Math. Soc. Janos Bolyai. 63, 217-244.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
Crossrefs
Cf. A135711.
Programs
-
Magma
[3*n+Ceiling(Sqrt(12*n-3)): n in [1..65]]; // Vincenzo Librandi, Oct 30 2016
-
Mathematica
Table[3*n + Ceiling[Sqrt[12*n - 3]], {n,1,25}] (* G. C. Greubel, Oct 29 2016 *)
-
PARI
a(n) = 3*n + ceil(sqrt(12*n-3)); \\ Michel Marcus, Oct 30 2016
-
Python
from math import isqrt def A135708(n): return 3*n+1+isqrt(12*n-4) # Chai Wah Wu, Jul 28 2022
Formula
a(n) = 3*n + ceiling(sqrt(12*n - 3)). - H. Harborth
2*a(n) - A135711(n) = 6n. - Tanya Khovanova, Mar 07 2008
Comments