cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A135756 a(n) = Sum_{k=0..n} C(n,k) * 2^(k*(k-1)).

Original entry on oeis.org

1, 2, 7, 80, 4381, 1069742, 1080096067, 4405584869660, 72092808533798521, 4723015159635987920282, 1237987266193328694390243007, 1298087832233881093828346620725800
Offset: 0

Views

Author

Paul D. Hanna, Nov 27 2007

Keywords

Comments

The square root of the g.f. of this sequence is an integer series (cf. A261594).

Examples

			G.f.: A(x) = 1 + 2*x + 7*x^2 + 80*x^3 + 4381*x^4 + 1069742*x^5 +...
		

Crossrefs

Cf. A261594; variants: A006896, A135755.

Programs

  • Mathematica
    Table[Sum[Binomial[n, k]*2^(2*Binomial[k, 2]), {k,0,n}], {n,0,25}] (* G. C. Greubel, Nov 07 2016 *)
  • PARI
    {a(n)=sum(k=0,n,binomial(n,k)*2^(k*(k-1)))}

Formula

a(n) ~ 2^(n*(n-1)). - Vaclav Kotesovec, Nov 27 2017

A353041 G.f. A(x) satisfies: A(x) = 1 + x * A(3*x/(1 + 2*x)) / (1 - x).

Original entry on oeis.org

1, 1, 4, 34, 820, 62140, 14651728, 10547347384, 22950318347248, 150277943334242320, 2955664382713520203072, 174478760893191691170298912, 30905073486465684713191125079360, 16423574117627547687292156418920831936, 26184104208316120602662312616366633316565248
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 19 2022

Keywords

Crossrefs

Cf. A006898, A047656, A135755 (partial sums), A353042.

Programs

  • Mathematica
    nmax = 14; A[] = 0; Do[A[x] = 1 + x A[3 x/(1 + 2 x)]/(1 - x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
    Table[Sum[Binomial[n - 1, k - 1] 3^(k (k - 1)/2), {k, 0, n}], {n, 0, 14}]

Formula

G.f.: Sum_{k>=0} 3^(k*(k-1)/2) * (x/(1 - x))^k.
a(n) = Sum_{k=0..n} binomial(n-1,k-1) * 3^(k*(k-1)/2).
Showing 1-2 of 2 results.