A135837 A007318 * a triangle with (1, 2, 2, 4, 4, 8, 8, ...) in the main diagonal and the rest zeros.
1, 1, 2, 1, 4, 2, 1, 6, 6, 4, 1, 8, 12, 16, 4, 1, 10, 20, 40, 20, 8, 1, 12, 30, 80, 60, 48, 8, 1, 14, 42, 140, 140, 168, 56, 16, 1, 16, 56, 224, 280, 448, 224, 128, 16, 1, 18, 72, 336, 504, 1008, 672, 576, 144, 32
Offset: 1
Examples
First few rows of the triangle: 1; 1, 2; 1, 4, 2; 1, 6, 6, 4; 1, 8, 12, 16, 4; 1, 10, 20, 40, 20, 8; 1, 12, 30, 80, 60, 48, 8; ... From _Philippe Deléham_, Mar 19 2012: (Start) (1, 0, 0, 1, 0, 0, ...) DELTA (0, 2, -1, -1, 0, 0, ...) begins: 1; 1, 0; 1, 2, 0; 1, 4, 2, 0; 1, 6, 6, 4, 0; 1, 8, 12, 16, 4, 0; 1, 10, 20, 40, 20, 8, 0; 1, 12, 30, 80, 60, 48, 8, 0; (End)
Links
- Reinhard Zumkeller, Rows n = 1..150 of triangle, flattened
Programs
-
Haskell
a135837 n k = a135837_tabl !! (n-1) !! (k-1) a135837_row n = a135837_tabl !! (n-1) a135837_tabl = [1] : [1, 2] : f [1] [1, 2] where f xs ys = ys' : f ys ys' where ys' = zipWith3 (\u v w -> 2 * u - v + 2 * w) (ys ++ [0]) (xs ++ [0, 0]) ([0, 0] ++ xs) -- Reinhard Zumkeller, Aug 08 2012
-
Mathematica
(* First program *) u[1, x_]:= 1; v[1, x_]:= 1; z = 13; u[n_, x_]:= u[n-1, x] + x*v[n-1, x]; v[n_, x_]:= 2 x*u[n-1, x] + v[n-1, x]; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A117919 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A135837 *) (* Clark Kimberling, Feb 26 2012 *) (* Second program *) T[n_, k_]:= T[n, k]= If[k<1 || k>n, 0, If[k==1, 1, If[k==n, 2^Floor[n/2], 2*T[n-1, k] - T[n-2, k] + 2*T[n-2, k-2]]]]; Table[T[n, k], {n,12}, {k,n}]//Flatten (* G. C. Greubel, Feb 07 2022 *)
-
Sage
def T(n,k): # A135837 if (k<1 or k>n): return 0 elif (k==1): return 1 elif (k==n): return 2^(n//2) else: return 2*T(n-1, k) - T(n-2, k) + 2*T(n-2, k-2) flatten([[T(n,k) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Feb 07 2022
Formula
Binomial transform of a triangle with (1, 2, 2, 4, 4, 8, 8, ...) in the main diagonal and the rest zeros.
Sum_{k=1..n} T(n, k) = A001333(n).
From Philippe Deléham, Mar 19 2012: (Start)
As DELTA-triangle with 0 <= k <= n:
G.f.: (1-x+2*y*x^2-2*y^2*x^2)/(1-2*x+2*y*x^2-2*y^2*x^2).
T(n,k) = 2*T(n-1,k) - T(n-2,k) + 2*T(n-2,k-2), T(0,0) = T(1,0) = T(2,0) = 1, T(1,1) = T(2,2) = 0, T(2,1) = 2, T(n,k) = 0 if k < 0 or if k > n. (End)
G.f.: x*y*(1-x+2*x*y)/(1-2*x-2*x^2*y^2+x^2). - R. J. Mathar, Aug 11 2015
From G. C. Greubel, Feb 07 2022: (Start)
T(n, n) = A016116(n).
T(n, 2) = 2*(n-1).
T(n, 3) = 2*A000217(n-2). (End)
Comments