cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A001333 Pell-Lucas numbers: numerators of continued fraction convergents to sqrt(2).

Original entry on oeis.org

1, 1, 3, 7, 17, 41, 99, 239, 577, 1393, 3363, 8119, 19601, 47321, 114243, 275807, 665857, 1607521, 3880899, 9369319, 22619537, 54608393, 131836323, 318281039, 768398401, 1855077841, 4478554083, 10812186007, 26102926097, 63018038201, 152139002499, 367296043199
Offset: 0

Views

Author

Keywords

Comments

Number of n-step non-selfintersecting paths starting at (0,0) with steps of types (1,0), (-1,0) or (0,1) [Stanley].
Number of n steps one-sided prudent walks with east, west and north steps. - Shanzhen Gao, Apr 26 2011
Number of ternary strings of length n-1 with subwords (0,2) and (2,0) not allowed. - Olivier Gérard, Aug 28 2012
Number of symmetric 2n X 2 or (2n-1) X 2 crossword puzzle grids: all white squares are edge connected; at least 1 white square on every edge of grid; 180-degree rotational symmetry. - Erich Friedman
a(n+1) is the number of ways to put molecules on a 2 X n ladder lattice so that the molecules do not touch each other.
In other words, a(n+1) is the number of independent vertex sets and vertex covers in the n-ladder graph P_2 X P_n. - Eric W. Weisstein, Apr 04 2017
Number of (n-1) X 2 binary arrays with a path of adjacent 1's from top row to bottom row, see A359576. - R. H. Hardin, Mar 16 2002
a(2*n+1) with b(2*n+1) := A000129(2*n+1), n >= 0, give all (positive integer) solutions to Pell equation a^2 - 2*b^2 = -1.
a(2*n) with b(2*n) := A000129(2*n), n >= 1, give all (positive integer) solutions to Pell equation a^2 - 2*b^2 = +1 (see Emerson reference).
Bisection: a(2*n) = T(n,3) = A001541(n), n >= 0 and a(2*n+1) = S(2*n,2*sqrt(2)) = A002315(n), n >= 0, with T(n,x), resp. S(n,x), Chebyshev's polynomials of the first, resp. second kind. See A053120, resp. A049310.
Binomial transform of A077957. - Paul Barry, Feb 25 2003
For n > 0, the number of (s(0), s(1), ..., s(n)) such that 0 < s(i) < 4 and |s(i) - s(i-1)| <= 1 for i = 1,2,...,n, s(0) = 2, s(n) = 2. - Herbert Kociemba, Jun 02 2004
For n > 1, a(n) corresponds to the longer side of a near right-angled isosceles triangle, one of the equal sides being A000129(n). - Lekraj Beedassy, Aug 06 2004
Exponents of terms in the series F(x,1), where F is determined by the equation F(x,y) = xy + F(x^2*y,x). - Jonathan Sondow, Dec 18 2004
Number of n-words from the alphabet A={0,1,2} which two neighbors differ by at most 1. - Fung Cheok Yin (cheokyin_restart(AT)yahoo.com.hk), Aug 30 2006
Consider the mapping f(a/b) = (a + 2b)/(a + b). Taking a = b = 1 to start with and carrying out this mapping repeatedly on each new (reduced) rational number gives the following sequence 1/1, 3/2, 7/5, 17/12, 41/29, ... converging to 2^(1/2). Sequence contains the numerators. - Amarnath Murthy, Mar 22 2003 [Amended by Paul E. Black (paul.black(AT)nist.gov), Dec 18 2006]
Odd-indexed prime numerators are prime RMS numbers (A140480) and also NSW primes (A088165). - Ctibor O. Zizka, Aug 13 2008
The intermediate convergents to 2^(1/2) begin with 4/3, 10/7, 24/17, 58/41; essentially, numerators=A052542 and denominators here. - Clark Kimberling, Aug 26 2008
Equals right border of triangle A143966. Starting (1, 3, 7, ...) equals INVERT transform of (1, 2, 2, 2, ...) and row sums of triangle A143966. - Gary W. Adamson, Sep 06 2008
Inverse binomial transform of A006012; Hankel transform is := [1, 2, 0, 0, 0, 0, 0, 0, 0, ...]. - Philippe Deléham, Dec 04 2008
From Charlie Marion, Jan 07 2009: (Start)
In general, denominators, a(k,n) and numerators, b(k,n), of continued fraction convergents to sqrt((k+1)/k) may be found as follows:
let a(k,0) = 1, a(k,1) = 2k; for n>0, a(k,2n) = 2*a(k,2n-1) + a(k,2n-2) and a(k,2n+1) = (2k)*a(k,2n) + a(k,2n-1);
let b(k,0) = 1, b(k,1) = 2k+1; for n>0, b(k,2n) = 2*b(k,2n-1) + b(k,2n-2) and b(k,2n+1) = (2k)*b(k,2n) + b(k,2n-1).
For example, the convergents to sqrt(2/1) start 1/1, 3/2, 7/5, 17/12, 41/29.
In general, if a(k,n) and b(k,n) are the denominators and numerators, respectively, of continued fraction convergents to sqrt((k+1)/k) as defined above, then
k*a(k,2n)^2 - a(k,2n-1)*a(k,2n+1) = k = k*a(k,2n-2)*a(k,2n) - a(k,2n-1)^2 and
b(k,2n-1)*b(k,2n+1) - k*b(k,2n)^2 = k+1 = b(k,2n-1)^2 - k*b(k,2n-2)*b(k,2n);
for example, if k=1 and n=3, then b(1,n)=a(n+1) and
1*a(1,6)^2 - a(1,5)*a(1,7) = 1*169^2 - 70*408 = 1;
1*a(1,4)*a(1,6) - a(1,5)^2 = 1*29*169 - 70^2 = 1;
b(1,5)*b(1,7) - 1*b(1,6)^2 = 99*577 - 1*239^2 = 2;
b(1,5)^2 - 1*b(1,4)*b(1,6) = 99^2 - 1*41*239 = 2.
(End)
This sequence occurs in the lower bound of the order of the set of equivalent resistances of n equal resistors combined in series and in parallel (A048211). - Sameen Ahmed Khan, Jun 28 2010
Let M = a triangle with the Fibonacci series in each column, but the leftmost column is shifted upwards one row. A001333 = lim_{n->infinity} M^n, the left-shifted vector considered as a sequence. - Gary W. Adamson, Jul 27 2010
a(n) is the number of compositions of n when there are 1 type of 1 and 2 types of other natural numbers. - Milan Janjic, Aug 13 2010
Equals the INVERTi transform of A055099. - Gary W. Adamson, Aug 14 2010
From L. Edson Jeffery, Apr 04 2011: (Start)
Let U be the unit-primitive matrix (see [Jeffery])
U = U_(8,2) = (0 0 1 0)
(0 1 0 1)
(1 0 2 0)
(0 2 0 1).
Then a(n) = (1/4)*Trace(U^n). (See also A084130, A006012.)
(End)
For n >= 1, row sums of triangle
m/k.|..0.....1.....2.....3.....4.....5.....6.....7
==================================================
.0..|..1
.1..|..1.....2
.2..|..1.....2.....4
.3..|..1.....4.....4.....8
.4..|..1.....4....12.....8....16
.5..|..1.....6....12....32....16....32
.6..|..1.....6....24....32....80....32....64
.7..|..1.....8....24....80....80...192....64...128
which is the triangle for numbers 2^k*C(m,k) with duplicated diagonals. - Vladimir Shevelev, Apr 12 2012
a(n) is also the number of ways to place k non-attacking wazirs on a 2 X n board, summed over all k >= 0 (a wazir is a leaper [0,1]). - Vaclav Kotesovec, May 08 2012
The sequences a(n) and b(n) := A000129(n) are entries of powers of the special case of the Brahmagupta Matrix - for details see Suryanarayan's paper. Further, as Suryanarayan remark, if we set A = 2*(a(n) + b(n))*b(n), B = a(n)*(a(n) + 2*b(n)), C = a(n)^2 + 2*a(n)*b(n) + 2*b(n)^2 we obtain integral solutions of the Pythagorean relation A^2 + B^2 = C^2, where A and B are consecutive integers. - Roman Witula, Jul 28 2012
Pisano period lengths: 1, 1, 8, 4, 12, 8, 6, 4, 24, 12, 24, 8, 28, 6, 24, 8, 16, 24, 40, 12, .... - R. J. Mathar, Aug 10 2012
This sequence and A000129 give the diagonal numbers described by Theon of Smyrna. - Sture Sjöstedt, Oct 20 2012
a(n) is the top left entry of the n-th power of any of the following six 3 X 3 binary matrices: [1, 1, 1; 1, 1, 1; 1, 0, 0] or [1, 1, 1; 1, 1, 0; 1, 1, 0] or [1, 1, 1; 1, 0, 1; 1, 1, 0] or [1, 1, 1; 1, 1, 0; 1, 0, 1] or [1, 1, 1; 1, 0, 1; 1, 0, 1] or [1, 1, 1; 1, 0, 0; 1, 1, 1]. - R. J. Mathar, Feb 03 2014
If p is prime, a(p) == 1 (mod p) (compare with similar comment for A000032). - Creighton Dement, Oct 11 2005, modified by Davide Colazingari, Jun 26 2016
a(n) = A000129(n) + A000129(n-1), where A000129(n) is the n-th Pell Number; e.g., a(6) = 99 = A000129(6) + A000129(5) = 70 + 29. Hence the sequence of fractions has the form 1 + A000129(n-1)/A000129(n), and the ratio A000129(n-1)/A000129(n)converges to sqrt(2) - 1. - Gregory L. Simay, Nov 30 2018
For n > 0, a(n+1) is the length of tau^n(1) where tau is the morphism: 1 -> 101, 0 -> 1. See Song and Wu. - Michel Marcus, Jul 21 2020
For n > 0, a(n) is the number of nonisomorphic quasitrivial semigroups with n elements, see Devillet, Marichal, Teheux. A292932 is the number of labeled quasitrivial semigroups. - Peter Jipsen, Mar 28 2021
a(n) is the permanent of the n X n tridiagonal matrix defined in A332602. - Stefano Spezia, Apr 12 2022
From Greg Dresden, May 08 2023: (Start)
For n >= 2, 4*a(n) is the number of ways to tile this T-shaped figure of length n-1 with two colors of squares and one color of domino; shown here is the figure of length 5 (corresponding to n=6), and it has 4*a(6) = 396 different tilings.
_
|| _
|||_|||
|_|
(End)
12*a(n) = number of walks of length n in the cyclic Kautz digraph CK(3,4). - Miquel A. Fiol, Feb 15 2024

Examples

			Convergents are 1, 3/2, 7/5, 17/12, 41/29, 99/70, 239/169, 577/408, 1393/985, 3363/2378, 8119/5741, 19601/13860, 47321/33461, 114243/80782, ... = A001333/A000129.
The 15 3 X 2 crossword grids, with white squares represented by an o:
  ooo ooo ooo ooo ooo ooo ooo oo. o.o .oo o.. .o. ..o oo. .oo
  ooo oo. o.o .oo o.. .o. ..o ooo ooo ooo ooo ooo ooo .oo oo.
G.f. = 1 + x + 3*x^2 + 7*x^3 + 17*x^4 + 41*x^5 + 99*x^6 + 239*x^7 + 577*x^8 + ...
		

References

  • M. R. Bacon and C. K. Cook, Some properties of Oresme numbers and convolutions ..., Fib. Q., 62:3 (2024), 233-240.
  • A. H. Beiler, Recreations in the Theory of Numbers. New York: Dover, pp. 122-125, 1964.
  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 204.
  • John Derbyshire, Prime Obsession, Joseph Henry Press, April 2004, see p. 16.
  • J. Devillet, J.-L. Marichal, and B. Teheux, Classifications of quasitrivial semigroups, Semigroup Forum, 100 (2020), 743-764.
  • Maribel Díaz Noguera [Maribel Del Carmen Díaz Noguera], Rigoberto Flores, Jose L. Ramirez, and Martha Romero Rojas, Catalan identities for generalized Fibonacci polynomials, Fib. Q., 62:2 (2024), 100-111.
  • Kenneth Edwards and Michael A. Allen, A new combinatorial interpretation of the Fibonacci numbers squared, Part II, Fib. Q., 58:2 (2020), 169-177.
  • R. P. Grimaldi, Ternary strings with no consecutive 0's and no consecutive 1's, Congressus Numerantium, 205 (2011), 129-149.
  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §8.5 The Fibonacci and Related Sequences, p. 288.
  • A. F. Horadam, R. P. Loh, and A. G. Shannon, Divisibility properties of some Fibonacci-type sequences, pp. 55-64 of Combinatorial Mathematics VI (Armidale 1978), Lect. Notes Math. 748, 1979.
  • Thomas Koshy, Pell and Pell-Lucas Numbers with Applications, Springer, New York, 2014.
  • Kin Y. Li, Math Problem Book I, 2001, p. 24, Problem 159.
  • I. Niven and H. S. Zuckerman, An Introduction to the Theory of Numbers. 2nd ed., Wiley, NY, 1966, p. 102, Problem 10.
  • J. Roberts, Lure of the Integers, Math. Assoc. America, 1992, p. 224.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. P. Stanley, Enumerative Combinatorics, Volume 1 (1986), p. 203, Example 4.1.2.
  • A. Tarn, Approximations to certain square roots and the series of numbers connected therewith, Mathematical Questions and Solutions from the Educational Times, 1 (1916), 8-12.
  • R. C. Tilley et al., The cell growth problem for filaments, Proc. Louisiana Conf. Combinatorics, ed. R. C. Mullin et al., Baton Rouge, 1970, 310-339.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987, p. 34.

Crossrefs

For denominators see A000129.
See A040000 for the continued fraction expansion of sqrt(2).
See also A078057 which is the same sequence without the initial 1.
Cf. also A002203, A152113.
Row sums of unsigned Chebyshev T-triangle A053120. a(n)= A054458(n, 0) (first column of convolution triangle).
Row sums of A140750, A160756, A135837.
Equals A034182(n-1) + 2 and A084128(n)/2^n. First differences of A052937. Partial sums of A052542. Pairwise sums of A048624. Bisection of A002965.
The following sequences (and others) belong to the same family: A001333, A000129, A026150, A002605, A046717, A015518, A084057, A063727, A002533, A002532, A083098, A083099, A083100, A015519.
Second row of the array in A135597.
Cf. A055099.
Cf. A028859, A001906 / A088305, A033303, A000225, A095263, A003945, A006356, A002478, A214260, A001911 and A000217 for other restricted ternary words.
Cf. Triangle A106513 (alternating row sums).
Equals A293004 + 1.
Cf. A033539, A332602, A086395 (subseq. of primes).

Programs

  • Haskell
    a001333 n = a001333_list !! n
    a001333_list = 1 : 1 : zipWith (+)
                           a001333_list (map (* 2) $ tail a001333_list)
    -- Reinhard Zumkeller, Jul 08 2012
    
  • Magma
    [n le 2 select 1 else 2*Self(n-1)+Self(n-2): n in [1..35]]; // Vincenzo Librandi, Nov 10 2018
    
  • Maple
    A001333 := proc(n) option remember; if n=0 then 1 elif n=1 then 1 else 2*procname(n-1)+procname(n-2) fi end;
    Digits := 50; A001333 := n-> round((1/2)*(1+sqrt(2))^n);
    with(numtheory): cf := cfrac (sqrt(2),1000): [seq(nthnumer(cf,i), i=0..50)];
    a:= n-> (M-> M[2, 1]+M[2, 2])(<<2|1>, <1|0>>^n):
    seq(a(n), n=0..33);  # Alois P. Heinz, Aug 01 2008
    A001333List := proc(m) local A, P, n; A := [1,1]; P := [1,1];
    for n from 1 to m - 2 do P := ListTools:-PartialSums([op(A), P[-2]]);
    A := [op(A), P[-1]] od; A end: A001333List(32); # Peter Luschny, Mar 26 2022
  • Mathematica
    Insert[Table[Numerator[FromContinuedFraction[ContinuedFraction[Sqrt[2], n]]], {n, 1, 40}], 1, 1] (* Stefan Steinerberger, Apr 08 2006 *)
    Table[((1 - Sqrt[2])^n + (1 + Sqrt[2])^n)/2, {n, 0, 29}] // Simplify (* Robert G. Wilson v, May 02 2006 *)
    a[0] = 1; a[1] = 1; a[n_] := a[n] = 2a[n - 1] + a[n - 2]; Table[a@n, {n, 0, 29}] (* Robert G. Wilson v, May 02 2006 *)
    Table[ MatrixPower[{{1, 2}, {1, 1}}, n][[1, 1]], {n, 0, 30}] (* Robert G. Wilson v, May 02 2006 *)
    a=c=0;t={b=1}; Do[c=a+b+c; AppendTo[t,c]; a=b;b=c,{n,40}]; t (* Vladimir Joseph Stephan Orlovsky, Mar 23 2009 *)
    LinearRecurrence[{2, 1}, {1, 1}, 40] (* Vladimir Joseph Stephan Orlovsky, Mar 23 2009 *)
    Join[{1}, Numerator[Convergents[Sqrt[2], 30]]] (* Harvey P. Dale, Aug 22 2011 *)
    Table[(-I)^n ChebyshevT[n, I], {n, 10}] (* Eric W. Weisstein, Apr 04 2017 *)
    CoefficientList[Series[(-1 + x)/(-1 + 2 x + x^2), {x, 0, 20}], x] (* Eric W. Weisstein, Sep 21 2017 *)
    Table[Sqrt[(ChebyshevT[n, 3] + (-1)^n)/2], {n, 0, 20}] (* Eric W. Weisstein, Apr 17 2018 *)
  • PARI
    {a(n) = if( n<0, (-1)^n, 1) * contfracpnqn( vector( abs(n), i, 1 + (i>1))) [1, 1]}; /* Michael Somos, Sep 02 2012 */
    
  • PARI
    {a(n) = polchebyshev(n, 1, I) / I^n}; /* Michael Somos, Sep 02 2012 */
    
  • PARI
    a(n) = real((1 + quadgen(8))^n); \\ Michel Marcus, Mar 16 2021
    
  • PARI
    { for (n=0, 4000, a=contfracpnqn(vector(n, i, 1+(i>1)))[1, 1]; if (a > 10^(10^3 - 6), break); write("b001333.txt", n, " ", a); ); } \\ Harry J. Smith, Jun 12 2009
    
  • Python
    from functools import cache
    @cache
    def a(n): return 1 if n < 2 else 2*a(n-1) + a(n-2)
    print([a(n) for n in range(32)]) # Michael S. Branicky, Nov 13 2022
  • Sage
    from sage.combinat.sloane_functions import recur_gen2
    it = recur_gen2(1,1,2,1)
    [next(it) for i in range(30)] ## Zerinvary Lajos, Jun 24 2008
    
  • Sage
    [lucas_number2(n,2,-1)/2 for n in range(0, 30)] # Zerinvary Lajos, Apr 30 2009
    

Formula

a(n) = A055642(A125058(n)). - Reinhard Zumkeller, Feb 02 2007
a(n) = 2a(n-1) + a(n-2);
a(n) = ((1-sqrt(2))^n + (1+sqrt(2))^n)/2.
a(n)+a(n+1) = 2 A000129(n+1). 2*a(n) = A002203(n).
G.f.: (1 - x) / (1 - 2*x - x^2) = 1 / (1 - x / (1 - 2*x / (1 + x))). - Simon Plouffe in his 1992 dissertation.
A000129(2n) = 2*A000129(n)*a(n). - John McNamara, Oct 30 2002
a(n) = (-i)^n * T(n, i), with T(n, x) Chebyshev's polynomials of the first kind A053120 and i^2 = -1.
a(n) = a(n-1) + A052542(n-1), n>1. a(n)/A052542(n) converges to sqrt(1/2). - Mario Catalani (mario.catalani(AT)unito.it), Apr 29 2003
E.g.f.: exp(x)cosh(x*sqrt(2)). - Paul Barry, May 08 2003
a(n) = Sum_{k=0..floor(n/2)} binomial(n, 2k)2^k. - Paul Barry, May 13 2003
For n > 0, a(n)^2 - (1 + (-1)^(n))/2 = Sum_{k=0..n-1} ((2k+1)*A001653(n-1-k)); e.g., 17^2 - 1 = 288 = 1*169 + 3*29 + 5*5 + 7*1; 7^2 = 49 = 1*29 + 3*5 + 5*1. - Charlie Marion, Jul 18 2003
a(n+2) = A078343(n+1) + A048654(n). - Creighton Dement, Jan 19 2005
a(n) = A000129(n) + A000129(n-1) = A001109(n)/A000129(n) = sqrt(A001110(n)/A000129(n)^2) = ceiling(sqrt(A001108(n))). - Henry Bottomley, Apr 18 2000
Also the first differences of A000129 (the Pell numbers) because A052937(n) = A000129(n+1) + 1. - Graeme McRae, Aug 03 2006
a(n) = Sum_{k=0..n} A122542(n,k). - Philippe Deléham, Oct 08 2006
For another recurrence see A000129.
a(n) = Sum_{k=0..n} A098158(n,k)*2^(n-k). - Philippe Deléham, Dec 26 2007
a(n) = upper left and lower right terms of [1,1; 2,1]^n. - Gary W. Adamson, Mar 12 2008
If p[1]=1, and p[i]=2, (i>1), and if A is Hessenberg matrix of order n defined by: A[i,j]=p[j-i+1], (i<=j), A[i,j]=-1, (i=j+1), and A[i,j]=0 otherwise. Then, for n>=1, a(n)=det A. - Milan Janjic, Apr 29 2010
For n>=2, a(n)=F_n(2)+F_(n+1)(2), where F_n(x) is Fibonacci polynomial (cf. A049310): F_n(x) = Sum_{i=0..floor((n-1)/2)} binomial(n-i-1,i)x^(n-2*i-1). - Vladimir Shevelev, Apr 13 2012
a(-n) = (-1)^n * a(n). - Michael Somos, Sep 02 2012
Dirichlet g.f.: (PolyLog(s,1-sqrt(2)) + PolyLog(s,1+sqrt(2)))/2. - Ilya Gutkovskiy, Jun 26 2016
a(n) = A000129(n) - A000129(n-1), where A000129(n) is the n-th Pell Number. Hence the continued fraction is of the form 1-(A000129(n-1)/A000129(n)). - Gregory L. Simay, Nov 09 2018
a(n) = (A000129(n+3) + A000129(n-3))/10, n>=3. - Paul Curtz, Jun 16 2021
a(n) = (A000129(n+6) - A000129(n-6))/140, n>=6. - Paul Curtz, Jun 20 2021
a(n) = round((1/2)*sqrt(Product_{k=1..n} 4*(1 + sin(k*Pi/n)^2))), for n>=1. - Greg Dresden, Dec 28 2021
a(n)^2 + a(n+1)^2 = A075870(n+1) = 2*(b(n)^2 + b(n+1)^2) for all n in Z where b(n) := A000129(n). - Michael Somos, Apr 02 2022
a(n) = 2*A048739(n-2)+1. - R. J. Mathar, Feb 01 2024
Sum_{n>=1} 1/a(n) = 1.5766479516393275911191017828913332473... - R. J. Mathar, Feb 05 2024
From Peter Bala, Jul 06 2025: (Start)
G.f.: Sum_{n >= 1} (-1)^(n+1) * x^(n-1) * Product_{k = 1..n} (1 - k*x)/(1 - 3*x + k*x^2).
The following series telescope:
Sum_{n >= 1} (-1)^(n+1)/(a(2*n) + 1/a(2*n)) = 1/4, since 1/(a(2*n) + 1/a(2*n)) = 1/A077445(n) + 1/A077445(n+1).
Sum_{n >= 1} (-1)^(n+1)/(a(2*n+1) - 1/a(2*n+1)) = 1/8, since. 1/(a(2*n+1) - 1/a(2*n+1)) = 1/(4*Pell(2*n)) + 1/(4*Pell(2*n+2)), where Pell(n) = A000129(n).
Sum_{n >= 1} (-1)^(n+1)/(a(2*n+1) + 9/a(2*n+1)) = 1/10, since 1/(a(2*n+1) + 9/a(2*n+1)) = b(n) + b(n+1), where b(n) = A001109(n)/(2*Pell(2*n-1)*Pell(2*n+1)).
Sum_{n >= 1} (-1)^(n+1)/(a(n)*a(n+1)) = 1 - sqrt(2)/2 = A268682, since (-1)^(n+1)/(a(n)*a(n+1)) = Pell(n)/a(n) - Pell(n+1)/a(n+1). (End)

Extensions

Chebyshev comments from Wolfdieter Lang, Jan 10 2003

A208510 Triangle of coefficients of polynomials u(n,x) jointly generated with A029653; see the Formula section.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 5, 4, 1, 1, 7, 9, 5, 1, 1, 9, 16, 14, 6, 1, 1, 11, 25, 30, 20, 7, 1, 1, 13, 36, 55, 50, 27, 8, 1, 1, 15, 49, 91, 105, 77, 35, 9, 1, 1, 17, 64, 140, 196, 182, 112, 44, 10, 1, 1, 19, 81, 204, 336, 378, 294, 156, 54, 11, 1, 1, 21, 100, 285, 540, 714, 672, 450, 210, 65, 12, 1
Offset: 1

Views

Author

Clark Kimberling, Feb 28 2012

Keywords

Comments

Row sums: A083329
Alternating row sums: 1,0,-1,-1,-1,-1,-1,-1,-1,-1,...
Antidiagonal sums: A000071 (-1+Fibonacci numbers)
col 1: A000012
col 2: A005408
col 3: A000290
col 4: A000330
col 5: A002415
col 6: A005585
col 7: A040977
col 8: A050486
col 9: A053347
col 10: A054333
col 11: A054334
col 12: A057788
col 2n-1 of A208510 is column n of A208508
col 2n of A208510 is column n of A208509.
...
GENERAL DISCUSSION:
A208510 typifies arrays generated by paired recurrence equations of the following form:
u(n,x)=a(n,x)*u(n-1,x)+b(n,x)*v(n-1,x)+c(n,x)
v(n,x)=d(n,x)*u(n-1,x)+e(n,x)*v(n-1,x)+f(n,x).
...
These first-order recurrences imply separate second-order recurrences. In order to show them, the six functions a(n,x),...,f(n,x) are abbreviated as a,b,c,d,e,f.
Then, starting with initial values u(1,x)=1 and u(2,x)=a+b+c: u(n,x) = (a+e)u(n-1,x) + (bd-ae)u(n-2,x) + bf-ce+c.
With initial values v(1,x)=1 and v(2,x)=d+e+f: v(n,x) = (a+e)v(n-1,x) + (bd-ae)v(n-2,x) + cd-af+f.
...
In the guide below, the last column codes certain sequences that occur in one of these ways: row, column, edge, row sum, alternating row sum. Coding:
A: 1,-1,1,-1,1,-1,1.... A033999
B: 1,2,4,8,16,32,64,... powers of 2
C: 1,1,1,1,1,1,1,1,.... A000012
D: 2,2,2,2,2,2,2,2,.... A007395
E: 2,4,6,8,10,12,14,... even numbers
F: 1,1,2,3,5,8,13,21,.. Fibonacci numbers
N: 1,2,3,4,5,6,7,8,.... A000027
O: 1,3,5,7,9,11,13,.... odd numbers
P: 1,3,9,27,81,243,.... powers of 3
S: 1,4,9,16,25,36,49,.. squares
T: 1,3,6,10,15,21,38,.. triangular numbers
Z: 1,0,0,0,0,0,0,0,0,.. A000007
*: (eventually) periodic alternating row sums
^: has a limiting row; i.e., the polynomials "approach" a power series
This coding includes indirect and repeated occurrences; e.g. F occurs thrice at A094441: in column 1 directly as Fibonacci numbers, in row sums as odd-indexed Fibonacci numbers, and in alternating row sums as signed Fibonacci numbers.
......... a....b....c....d....e....f....code
A034839 u 1....1....0....1....x....0....CCOT
A034867 v 1....1....0....1....x....0....CEN
A210221 u 1....1....0....1....2x...0....BBFF
A210596 v 1....1....0....1....2x...0....BBFF
A105070 v 1....2x...0....1....1....0....BN
A207605 u 1....1....0....1....x+1..0....BCFFN
A106195 v 1....1....0....1....x+1..0....BCFFN
A207606 u 1....1....0....x....x+1..0....DNT
A207607 v 1....1....0....x....x+1..0....DNT
A207608 u 1....1....0....2x...x+1..0....N
A207609 v 1....1....0....2x...x+1..0....C
A207610 u 1....1....0....1....x....1....CF
A207611 v 1....1....0....1....x....1....BCF
A207612 u 1....1....0....1....2x...1....BF
A207613 v 1....1....0....1....2x...1....BF
A207614 u 1....1....0....1....x+1..1....CN
A207615 v 1....1....0....1....x+1..1....CFN
A207616 u 1....1....0....x....1....1....CE
A207617 v 1....1....0....x....1....1....CNO
A029638 u 1....1....0....x....x....1....CDNO
A029635 v 1....1....0....x....x....1....CDNOZ
A207618 u 1....1....0....x....2x...1....N
A207619 v 1....1....0....x....2x...1....CFN
A207620 u 1....1....0....x....x+1..1....DET
A207621 v 1....1....0....x....x+1..1....DNO
A207622 u 1....1....0....2x...1....1....BT
A207623 v 1....1....0....2x...1....1....BN
A207624 u 1....1....0....2x...x....1....N
A102662 v 1....1....0....2x...x....1....CO
A207625 u 1....1....0....2x...x+1..1....T
A207626 v 1....1....0....2x...x+1..1....N
A207627 u 1....1....0....2x...2x...1....BN
A207628 v 1....1....0....2x...2x...1....BCE
A207629 u 1....1....0....x+1..1....1....CET
A207630 v 1....1....0....x+1..1....1....CO
A207631 u 1....1....0....x+1..x....1....DF
A207632 v 1....1....0....x+1..x....1....DEF
A207633 u 1....1....0....x+1..2x...1....F
A207634 v 1....1....0....x+1..2x...1....F
A207635 u 1....1....0....x+1..x+1..1....DN
A207636 v 1....1....0....x+1..x+1..1....CD
A160232 u 1....x....0....1....2x...0....BCFN
A208341 v 1....x....0....1....2x...0....BCFFN
A085478 u 1....x....0....1....x+1..0....CCOFT*
A078812 v 1....x....0....1....x+1..0....CEFN*
A208342 u 1....x....0....x....x....0....CCFNO
A208343 v 1....x....0....x....x....0....BBCDFZ
A208344 u 1....x....0....x....2x...0....CCFN
A208345 v 1....x....0....x....2x...0....CFZ
A094436 u 1....x....0....x....x+1..0....CFFN
A094437 v 1....x....0....x....x+1..0....CEFF
A117919 u 1....x....0....2x...1....0....BCNT
A135837 v 1....x....0....2x...1....0....BCET
A208328 u 1....x....0....2x...x....0....CCOP
A208329 v 1....x....0....2x...x....0....DPZ
A208330 u 1....x....0....2x...x+1..0....CNPT
A208331 v 1....x....0....2x...x+1..0....CN
A208332 u 1....x....0....2x...2x...0....CCE
A208333 v 1....x....0....2x...2x...0....DZ
A208334 u 1....x....0....x+1..1....0....CCNT
A208335 v 1....x....0....x+1..1....0....CCN*
A208336 u 1....x....0....x+1..x....0....CFNT*
A208337 v 1....x....0....x+1..x....0....ACFN*
A208338 u 1....x....0....x+1..2x...0....CNP
A208339 v 1....x....0....x+1..2x...0....BCNP
A202390 u 1....x....0....x+1..x+1..0....CFPTZ*
A208340 v 1....x....0....x+1..x+1..0....FNPZ*
A208508 u 1....x....0....1....1....1....CCES
A208509 v 1....x....0....1....1....1....BCO
A208510 u 1....x....0....1....x....1....CCCNOS*
A029653 v 1....x....0....1....x....1....BCDOSZ*
A208511 u 1....x....0....1....2x...1....BCFO
A208512 v 1....x....0....1....2x...1....BDFO
A208513 u 1....x....0....1....x+1..1....CCES*
A111125 v 1....x....0....1....x+1..1....COO*
A133567 u 1....x....0....x....1....1....CCOTT
A133084 v 1....x....0....x....1....1....BBCEN
A208514 u 1....x....0....x....x....1....CEFN
A208515 v 1....x....0....x....x....1....BCDFN
A208516 u 1....x....0....x....2x...1....CNN
A208517 v 1....x....0....x....2x...1....CCN
A208518 u 1....x....0....x....x+1..1....CFNT
A208519 v 1....x....0....x....x+1..1....NFFT
A208520 u 1....x....0....2x...1....1....BCTT
A208521 v 1....x....0....2x...1....1....BEN
A208522 u 1....x....0....2x...x....1....CCN
A208523 v 1....x....0....2x...x....1....CCO
A208524 u 1....x....0....2x...x+1..1....CT*
A208525 v 1....x....0....2x...x+1..1....ACNP*
A208526 u 1....x....0....2x...2x...1....CEN
A208527 v 1....x....0....2x...2x...1....CCE
A208606 u 1....x....0....x+1..1....1....CCS
A208607 v 1....x....0....x+1..1....1....CNO
A208608 u 1....x....0....x+1..x....1....CFOT
A208609 v 1....x....0....x+1..x....1....DEN*
A208610 u 1....x....0....x+1..2x...1....CO
A208611 v 1....x....0....x+1..2x...1....DE
A208612 u 1....x....0....x+1..x+1..1....CFNS
A208613 v 1....x....0....x+1..x+1..1....CFN*
A105070 u 1....2x...0....1....1....0....BN
A207536 u 1....2x...0....1....1....0....BCT
A208751 u 1....2x...0....1....x+1..0....CDPT
A208752 v 1....2x...0....1....x+1..0....CNP
A135837 u 1....2x...0....x....1....0....BCNT
A117919 v 1....2x...0....x....1....0....BCNT
A208755 u 1....2x...0....x....x....0....BCDEP
A208756 v 1....2x...0....x....x....0....BCCOZ
A208757 u 1....2x...0....x....2x...0....CDEP
A208758 v 1....2x...0....x....2x...0....CCEPZ
A208763 u 1....2x...0....2x...x....0....CDOP
A208764 v 1....2x...0....2x...x....0....CCCP
A208765 u 1....2x...0....2x...x+1..0....CE
A208766 v 1....2x...0....2x...x+1..0....CC
A208747 u 1....2x...0....2x...2x...0....CDE
A208748 v 1....2x...0....2x...2x...0....CCZ
A208749 u 1....2x...0....x+1..1....0....BCOPT
A208750 v 1....2x...0....x+1..1....0....BCNP*
A208759 u 1....2x...0....x+1..2x....0...CE
A208760 v 1....2x...0....x+1..2x....0...BCO
A208761 u 1....2x...0....x+1..x+1...0...BCCT*
A208762 v 1....2x...0....x+1..x+1...0...BNZ*
A208753 u 1....2x...0....1....1.....1...BCS
A208754 v 1....2x...0....1....1.....1...BO
A105045 u 1....2x...0....1....2x....1...BCCOS*
A208659 v 1....2x...0....1....2x....1...BDOSZ*
A208660 u 1....2x...0....1....x+1...1...CDS
A208904 v 1....2x...0....1....x+1...1...CNO
A208905 u 1....2x...0....x....1.....1...BCT
A208906 v 1....2x...0....x....1.....1...BNN
A208907 u 1....2x...0....x....x.....1...BCN
A208756 v 1....2x...0....x....x.....1...BCCE
A208755 u 1....2x...0....x....2x....1...CEN
A208910 v 1....2x...0....x....2x....1...CCE
A208911 u 1....2x...0....x....x+1...1...BCT
A208912 v 1....2x...0....x....x+1...1...BNT
A208913 u 1....2x...0....2x...1.....1...BCT
A208914 v 1....2x...0....2x...1.....1...BEN
A208915 u 1....2x...0....2x...x.....1...CE
A208916 v 1....2x...0....2x...x.....1...CCO
A208919 u 1....2x...0....2x...x+1...1...CT
A208920 v 1....2x...0....2x...x+1...1...N
A208917 u 1....2x...0....2x...2x....1...CEN
A208918 v 1....2x...0....2x...2x....1...CCNP
A208921 u 1....2x...0....x+1..1.....1...BC
A208922 v 1....2x...0....x+1..1.....1...BON
A208923 u 1....2x...0....x+1..x.....1...BCNO
A208908 v 1....2x...0....x+1..x.....1...BDN*
A208909 u 1....2x...0....x+1..2x....1...BN
A208930 v 1....2x...0....x+1..2x....1...DN
A208931 u 1....2x...0....x+1..x+1...1...BCOS
A208932 v 1....2x...0....x+1..x+1...1...BCO*
A207537 u 1....x+1..0....1....1.....0...BCO
A207538 v 1....x+1..0....1....1.....0...BCE
A122075 u 1....x+1..0....1....x.....0...CCFN*
A037027 v 1....x+1..0....1....x.....0...CCFN*
A209125 u 1....x+1..0....1....2x....0...BCFN*
A164975 v 1....x+1..0....1....2x....0...BF
A209126 u 1....x+1..0....x....x.....0...CDFO*
A209127 v 1....x+1..0....x....x.....0...DFOZ*
A209128 u 1....x+1..0....x....2x....0...CDE*
A209129 v 1....x+1..0....x....2x....0...DEZ
A102756 u 1....x+1..0....x....x+1...0...CFNP*
A209130 v 1....x+1..0....x....x+1...0...CCFNP*
A209131 u 1....x+1..0....2x...x.....0...CDEP*
A209132 v 1....x+1..0....2x...x.....0...CNPZ*
A209133 u 1....x+1..0....2x...2x....0...CDN
A209134 v 1....x+1..0....2x...2x....0...CCN*
A209135 u 1....x+1..0....2x...x+1...0...CN*
A209136 v 1....x+1..0....2x...x+1...0...CCS*
A209137 u 1....x+1..0....x+1..x.....0...CFFP*
A209138 v 1....x+1..0....x+1..x.....0...AFFP*
A209139 u 1....x+1..0....x+1..2x....0...CF*
A209140 v 1....x+1..0....x+1..2x....0...BF
A209141 u 1....x+1..0....x+1..x+1...0...BCF*
A209142 v 1....x+1..0....x+1..x+1...0...BFZ*
A209143 u 1....x+1..0....1....1.....1...CCE*
A209144 v 1....x+1..0....1....1.....1...COO*
A209145 u 1....x+1..0....1....x.....1...CCFN*
A122075 v 1....x+1..0....1....x.....1...CCFN*
A209146 u 1....x+1..0....1....2x....1...BCF*
A209147 v 1....x+1..0....1....2x....1...BF
A209148 u 1....x+1..0....1....x+1...1...CCO*
A209149 v 1....x+1..0....1....x+1...1...CDO*
A209150 u 1....x+1..0....x....1.....1...CCNT*
A208335 v 1....x+1..0....x....1.....1...CDNN*
A209151 u 1....x+1..0....x....x.....1...CFN*
A208337 v 1....x+1..0....x....x.....1...ACFN*
A209152 u 1....x+1..0....x....2x....1...CN*
A208339 v 1....x+1..0....x....x.....1...BCN
A209153 u 1....x+1..0....x....x+1...1...CFT*
A208340 v 1....x+1..0....x....x.....1...FNZ*
A209154 u 1....x+1..0....2x...1.....1...BCT*
A209157 v 1....x+1..0....2x...1.....1...BNN
A209158 u 1....x+1..0....2x...x.....1...CN*
A209159 v 1....x+1..0....2x...x.....1...CO*
A209160 u 1....x+1..0....2x...2x....1...CN*
A209161 v 1....x+1..0....2x...2x....1...CE
A209162 u 1....x+1..0....2x...x+1...1...CT*
A209163 v 1....x+1..0....2x...x+1...1...CO*
A209164 u 1....x+1..0....x+1..1.....1...CC*
A209165 v 1....x+1..0....x+1..1.....1...CCN
A209166 u 1....x+1..0....x+1..x.....1...CFF*
A209167 v 1....x+1..0....x+1..x.....1...FF*
A209168 u 1....x+1..0....x+1..2x....1...CF*
A209169 v 1....x+1..0....x+1..2x....1...CF
A209170 u 1....x+1..0....x+1..x+1...1...CF*
A209171 v 1....x+1..0....x+1..x+1...1...CF*
A053538 u x....1....0....1....1.....0...BBCCFN
A076791 v x....1....0....1....1.....0...BBCDF
A209172 u x....1....0....1....2x....0...BCCFF
A209413 v x....1....0....1....2x....0...BCCFF
A094441 u x....1....0....1....x+1...0...CFFFN
A094442 v x....1....0....1....x+1...0...CEFFF
A054142 u x....1....0....x....x+1...0...CCFOT*
A172431 v x....1....0....x....x+1...0...CEFN*
A008288 u x....1....0....2x...1.....0...CCOO*
A035607 v x....1....0....2x...1.....0...ACDE*
A209414 u x....1....0....2x...x+1...0...CCS
A112351 v x....1....0....2x...x+1...0...CON
A209415 u x....1....0....x+1..x.....0...CCTN
A209416 v x....1....0....x+1..x.....0...ACN*
A209417 u x....1....0....x+1..2x....0...CC
A209418 v x....1....0....x+1..2x....0...BBC
A209419 u x....1....0....x+1..x+1...0...CFTZ*
A209420 v x....1....0....x+1..x+1...0...FNZ*
A209421 u x....1....0....1....1.....1...CCN
A209422 v x....1....0....1....1.....1...CD
A209555 u x....1....0....1....x.....1...CNN
A209556 v x....1....0....1....x.....1...CNN
A209557 u x....1....0....1....2x....1...BCN
A209558 v x....1....0....1....2x....1...BN
A209559 u x....1....0....1....x+1...1...CN
A209560 v x....1....0....1....x+1...1...CN
A209561 u x....1....0....x....1.....1...CCNNT*
A209562 v x....1....0....x....1.....1...CDNNT*
A209563 u x....1....0....x....x.....1...CCFT^
A209564 v x....1....0....x....x.....1...CFN^
A209565 u x....1....0....x....2x....1...CC^
A209566 v x....1....0....x....2x....1...BC^
A209567 u x....1....0....x....x+1...1...CNT*
A209568 v x....1....0....x....x+1...1...NNS*
A209569 u x....1....0....2x...1.....1...CNO*
A209570 v x....1....0....2x...1.....1...DNN*
A209571 u x....1....0....2x...x.....1...CCS^
A209572 v x....1....0....2x...x.....1...CN^
A209573 u x....1....0....2x...x+1...1...CNS
A209574 v x....1....0....2x...x+1...1...NO
A209575 u x....1....0....2x...2x....1...CC
A209576 v x....1....0....2x...2x....1...C
A209577 u x....1....0....x+1..1.....1...CNNT
A209578 v x....1....0....x+1..1.....1...CNN
A209579 u x....1....0....x+1..x.....1...CNNT
A209580 v x....1....0....x+1..x.....1...NN*
A209581 u x....1....0....x+1..2x....1...CN
A209582 v x....1....0....x+1..2x....1...BN
A209583 u x....1....0....x+1..x+1...1...CT*
A209584 v x....1....0....x+1..x+1...1...CN*
A121462 u x....x....0....x....x+1...0...BCFFNZ
A208341 v x....x....0....x....x+1...0...BCFFN
A209687 u x....x....0....2x...x+1...0...BCNZ
A208339 v x....x....0....2x...x+1...0...BCN
A115241 u x....x....0....1....1.....1...CDNZ*
A209688 v x....x....0....1....1.....1...DDN*
A209689 u x....x....0....1....x.....1...FNZ^
A209690 v x....x....0....1....x.....1...FN^
A209691 u x....x....0....1....2x....1...BCZ^
A209692 v x....x....0....1....2x....1...BCC^
A209693 u x....x....0....1....x+1...1...NNZ*
A209694 v x....x....0....1....x+1...1...CN*
A209697 u x....x....0....x....x+1...1...BNZ
A209698 v x....x....0....x....x+1...1...BNT
A209699 u x....x....0....2x...1.....1...BNNZ
A209700 v x....x....0....2x...1.....1...BDN
A209701 u x....x....0....2x...x+1...1...NZ
A209702 v x....x....0....2x...x+1...1...N
A209703 u x....x....0....x+1..1.....1...FNTZ
A209704 v x....x....0....x+1..1.....1...FNNT
A209705 u x....x....0....x+1..x+1...1...BNZ*
A209706 v x....x....0....x+1..x+1...1...BCN*
A209695 u x....x+1..0....2x...x+1...0...ACN*
A209696 v x....x+1..0....2x...x+1...0...CDN*
A209830 u x....x+1..0....x+1..2x....0...ACF
A209831 v x....x+1..0....x+1..2x....0...BCF*
A209745 u x....x+1..0....x+1..x+1...0...ABF*
A209746 v x....x+1..0....x+1..x+1...0...BFZ*
A209747 u x....x+1..0....1....1.....1...ADE*
A209748 v x....x+1..0....1....1.....1...DEO
A209749 u x....x+1..0....1....x.....1...ANN*
A209750 v x....x+1..0....1....x.....1...CNO
A209751 u x....x+1..0....1....2x....1...ABN*
A209752 v x....x+1..0....1....2x....1...BN
A209753 u x....x+1..0....1....x+1...1...AN*
A209754 v x....x+1..0....1....x+1...1...NT*
A209755 u x....x+1..0....x....1.....1...AFN
A209756 v x....x+1..0....x....1.....1...FNO*
A209759 u x....x+1..0....x....2x....1...ACF^
A209760 v x....x+1..0....x....2x....1...CF^*
A209761 u x....x+1..0....x.....x+1..1...ABNS*
A209762 v x....x+1..0....x.....x+1..1...BNS*
A209763 u x....x+1..0....2x....1....1...ABN*
A209764 v x....x+1..0....2x....1....1...BNN
A209765 u x....x+1..0....2x....x....1...ACF^*
A209766 v x....x+1..0....2x....x....1...CF^
A209767 u x....x+1..0....2x....x+1..1...AN*
A209768 v x....x+1..0....2x....x+1..1...N*
A209769 u x....x+1..0....x+1...1....1...AF*
A209770 v x....x+1..0....x+1...1....1...FN
A209771 u x....x+1..0....x+1...x....1...ABN*
A209772 v x....x+1..0....x+1...x....1...BN*
A209773 u x....x+1..0....x+1...2x...1...AF
A209774 v x....x+1..0....x+1...2x...1...FN*
A209775 u x....x+1..0....x+1...x+1..1...AB*
A209776 v x....x+1..0....x+1...x+1..1...BC*
A210033 u 1....1....1....1.....x....1...BCN
A210034 v 1....1....1....1.....x....1...BCDFN
A210035 u 1....1....1....1.....2x...1...BBF
A210036 v 1....1....1....1.....2x...1...BBFF
A210037 u 1....1....1....1.....x+1..1...BCFFN
A210038 v 1....1....1....1.....x+1..1...BCFFN
A210039 u 1....1....1....x.....1....1...BCOT
A210040 v 1....1....1....x.....1....1...BCEN
A210042 u 1....1....1....x.....x....1...BCDEOT*
A124927 v 1....1....1....x.....x....1...BCDET*
A210041 u 1....1....1....x.....2x...1...BFO
A209758 v 1....1....1....x.....2x...1...BCFO
A210187 u 1....1....1....x.....x+1..1...DTF*
A210188 v 1....1....1....x.....x+1..1...DNF*
A210189 u 1....1....1....2x....1....1...BT
A210190 v 1....1....1....2x....1....1...BN
A210191 u 1....1....1....2x....x....1...CO*
A210192 v 1....1....1....2x....x....1...CCO*
A210193 u 1....1....1....2x....x+1..1...CPT
A210194 v 1....1....1....2x....x+1..1...CN
A210195 u 1....1....1....2x....2x...1...BOPT*
A210196 v 1....1....1....2x....2x...1...BCC*
A210197 u 1....1....1....x+1...1....1...BCOT
A210198 v 1....1....1....x+1...1....1...BCEN
A210199 u 1....1....1....x+1...x....1...DFT
A210200 v 1....1....1....x+1...x....1...DFO*
A210201 u 1....1....1....x+1...2x...1...BFP
A210202 v 1....1....1....x+1...2x...1...BF
A210203 u 1....1....1....x+1...x+1..1...BDOP
A210204 v 1....1....1....x+1...x+1..1...BCDN*
A210211 u x....1....1....1.....2x...1...BCFN
A210212 v x....1....1....1.....2x...1...BFN
A210213 u x....1....1....1.....x+1..1...CFFN
A210214 v x....1....1....1.....x+1..1...CFFO
A210215 u x....1....1....x.....x....1...BCDFT^
A210216 v x....1....1....x.....x....1...BCFO^
A210217 u x....1....1....x.....2x...1...CDF^
A210218 v x....1....1....x.....2x...1...BCF^
A210219 u x....1....1....x.....x+1..1...CNSTF*
A210220 v x....1....1....x.....x+1..1...FNNT*
A104698 u x....1....1....2x......1..1...CENS*
A210220 v x....1....1....2x....x+1..1...DNNT*
A210223 u x....1....1....2x....x....1...CD^
A210224 v x....1....1....2x....x....1...CO^
A210225 u x....1....1....2x....x+1..1...CNP
A210226 v x....1....1....2x....x+1..1...NOT
A210227 u x....1....1....2x....2x...1...CDP^
A210228 v x....1....1....2x....2x...1...C^
A210229 u x....1....1....x+1...1....1...CFNN
A210230 v x....1....1....x+1...1....1...CCN
A210231 u x....1....1....x+1...x....1...CNT
A210232 v x....1....1....x+1...x....1...NN*
A210233 u x....1....1....x+1...2x...1...CNP
A210234 v x....1....1....x+1...2x...1...BN
A210235 u x....1....1....x+1...x+1..1...CCFPT*
A210236 v x....1....1....x+1...x+1..1...CFN*
A124927 u x....x....1....1.....1....1...BCDEET*
A210042 v x....1....1....x+1...x+1..1...BDEOT*
A210216 u x....x....1....1.....x....1...BCFO^
A210215 v x....x....1....1.....x....1...BCDFT^
A210549 u x....x....1....1.....2x...1...BCF^
A210550 v x....x....1....1.....2x...1...BDF^
A172431 u x....x....1....1.....x+1..1...CEFN*
A210551 v x....x....1....1.....x+1..1...CFOT*
A210552 u x....x....1....x.....1....1...BBCFNO
A210553 v x....x....1....x.....1....1...BNNFB
A208341 u x....x....1....x.....x+1..1...BCFFN
A210554 v x....x....1....x.....x+1..1...BNFFT
A210555 u x....x....1....2x....1....1...BCNN
A210556 v x....x....1....2x....1....1...BENP
A210557 u x....x....1....2x....x+1..1...CNP
A210558 v x....x....1....2x....x+1..1...N
A210559 u x....x....1....x+1...1....1...CEF
A210560 v x....x....1....x+1...1....1...OFNS
A210561 u x....x....1....x+1...x....1...BCNP^
A210562 v x....x....1....x+1...x....1...BDP*^
A210563 u x....x....1....x+1...2x...1...CFP^
A210564 v x....x....1....x+1...2x...1...DF^
A013609 u x....x....1....x+1...x+1..1...BCEPT*
A209757 v x....x....1....x+1...x+1..1...BCOS*
A209819 u x....2x...1....x+1...x....1...CFN^
A209820 v x....2x...1....x+1...x....1...DF^
A209996 u x....2x...1....x+1...2x...1...CP^
A209998 v x....2x...1....x+1...2x...1...DP^
A209999 u x....x+1..1....1.....x+1..1...FN*
A210287 v x....x+1..1....1.....x+1..1...CFT*
A210565 u x....x+1..1....x.....1....1...FNT*
A210595 v x....x+1..1....x.....1....1...FNNT
A210598 u x....x+1..1....x+1...2x...1...FN*
A210599 v x....x+1..1....x+1...2x...1...FN
A210600 u x....x+1..1....x+1...x+1..1...BF*
A210601 v x....x+1..1....x+1...x+1..1...BF*
A210597 u 2x...1....1....x+1...1....1...BF
A210601 v 2x...1....1....x+1...1....1...BFN*
A210603 u 2x...1....1....x+1...x+1..1...BF
A210738 v 2x...1....1....x+1...x+1..1...CBF*
A210739 u 2x...x....1....x+1...x....1...CF^
A210740 v 2x...x....1....x+1...x....1...DF*^
A210741 u 2x...x....1....x+1...x+1..1...BCFO
A210742 v 2x...x....1....x+1...x+1..1...CFO*
A210743 u 2x...x+1..1....x+1...1....1...F
A210744 v 2x...x+1..1....x+1...1....1...FN
A210747 u 2x...x+1..1....x+1...x+1..1...FF
A210748 v 2x...x+1..1....x+1...x+1..1...CFF*
A210749 u x+1..1....1....x+1...2x...1...BCF
A210750 v x+1..1....1....x+1...2x...1...BF
A210751 u x+1..x....1....x+1...2x...1...FNT
A210752 v x+1..x....1....x+1...2x...1...FN
A210753 u x+1..x....1....x+1...x+1..1...BNZ*
A210754 v x+1..x....1....x+1...x+1..1...BCT*
A210755 u x+1..2x...1....x+1...x+1..1...N*
A210756 v x+1..2x...1....x+1...x+1..1...CT*
A210789 u 1....x....0....x+2...x-1..0...CFFN
A210790 v 1....x....0....x+2...x-1..0...CEFF
A210791 u 1....x....0....x-1...x+2..0...CFNP
A210792 v 1....x....0....x-1...x+2..0...CF
A210793 u 1....x+1..0....x+2...x-1..0...CFNP
A210794 v 1....x+1..0....x+2...x-1..0...FPP
A210795 u 1....x....1....x+2...x-1..0...FN
A210796 v 1....x....1....x+2...x-1..0...FO
A210797 u 1....x....0....x+2...x-1..1...CF
A210798 v 1....x....0....x+2...x-1..1...F
A210799 u 1....x+1..1....x+2...x-1..0...FN
A210800 v 1....x+1..1....x+2...x-1..0...F
A210801 u 1....x+1..1....x+2...x-1..1...FN
A210802 v 1....x+1..1....x+2...x-1..1...F
A210803 u 1....x....0....x-1...x+3..0...F*
A210804 v 1....x....0....x-1...x+3..0...F*
A210805 u 1....x....0....x+2...x-1.-1...CFFN
A210806 v 1....x....0....x+2...x-1.-1...FF
A210858 u 1....x....0....x+n...x....0...CFT*
A210859 v 1....x....0....x+n...x....0...FN*
A210860 u 1....x+1..0....x+n...x....0...F
A210861 v 1....x+1..0....x+n...x....0...F*
A210862 u 1....x....1....x+n-1.x....0...FN
A210863 v 1....x....1....x+n-1.x....0...FS
A210864 u 1....x....1....x+n...x....0...FN
A210865 v 1....x....1....x+n...x....0...FT
A210866 u 1....x....0....x+n...x...-x...CFT
A210867 v 1....x....0....x+n...x...-x...FN
A210868 u 1....x....0....x+1...x-1..0...BCFN
A210869 v 1....x....0....x+1...x-1..0...BBCFNZ
A210870 u 1....x....0....x+1...x-1..1...CFFN
A210871 v 1....x....0....x+1...x-1..1...CFF
A210872 u x....1...-1....x.....x....1...BDFZ^
A210873 v x....1...-1....x.....x....1...BCFN^
A210876 u x....1....1....x.....x....x...BCCF^
A210877 v x....1....1....x.....x....x...BDFNZ^
A210878 u x....2x...0....x+1...x....1...DFZ^
A210879 v x....2x...0....x+1...x....1...FC*^
Some of these triangles have irregular row lengths, making it difficult to retrieve individual rows/columns/diagonals without actually computing the recurrence. - Georg Fischer, Sep 04 2021

Examples

			First five rows:
1
1...1
1...3...1
1...5...4...1
1...7...9...5...1
First five polynomials u(n,x):
1
1 + x
1 + 3x + x^2
1 + 5x + 4x^2 + x^3
1 + 7x + 9x^2 + 5x^3 + x^4
		

Crossrefs

Programs

  • Mathematica
    u[1, x_] := 1; v[1, x_] := 1; z = 16;
    u[n_, x_] := u[n - 1, x] + x*v[n - 1, x];
    v[n_, x_] := u[n - 1, x] + x*v[n - 1, x] + 1;
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]   (* A208510 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]   (* A029653 *)
  • Python
    from sympy import Poly
    from sympy.abc import x
    def u(n, x): return 1 if n==1 else u(n - 1, x) + x*v(n - 1, x)
    def v(n, x): return 1 if n==1 else u(n - 1, x) + x*v(n - 1, x) + 1
    def a(n): return Poly(u(n, x), x).all_coeffs()[::-1]
    for n in range(1, 13): print(a(n)) # Indranil Ghosh, May 27 2017

Formula

u(n,x)=u(n-1,x)+x*v(n-1,x),
v(n,x)=u(n-1,x)+x*v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.
Also, u(n,x)=(x+1)*u(n-1,x)+x for n>2, with u(n,2)=x+1.

Extensions

Corrected by Philippe Deléham, Apr 10 2012
Corrections and additions by Clark Kimberling, May 09 2012
Corrections in the overview by Georg Fischer, Sep 04 2021

A117919 Triangle read by rows: T(n, k) = 2^floor((k-1)/2)*binomial(n-1, k-1).

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 3, 6, 2, 1, 4, 12, 8, 4, 1, 5, 20, 20, 20, 4, 1, 6, 30, 40, 60, 24, 8, 1, 7, 42, 70, 140, 84, 56, 8, 1, 8, 56, 112, 280, 224, 224, 64, 16, 1, 9, 72, 168, 504, 504, 672, 288, 144, 16, 1, 10, 90, 240, 840, 1008, 1680, 960, 720, 160, 32, 1, 11, 110, 330, 1320, 1848, 3696, 2640, 2640, 880, 352, 32
Offset: 1

Views

Author

Gary W. Adamson, Apr 02 2006

Keywords

Comments

Row sums are the Pell sequence A000129.
Right border = inverse binomial transform of the Pell sequence: (A016116).
This triangle = difference terms of columns from an array generated from binomial transforms of (1,0,0,0...); (1,1,0,0,0...); (1,1,2,2...); (1,1,2,2,4,...); where (1, 1, 2, 2, 4, 4,...) = A016116, the inverse binomial transform of the Pell sequence A000129.
Triangle read by rows, iterates of X * [1,0,0,0,...] where X = an infinite bidiagonal matrix with (1,1,1,...) in the main diagonal and (1,2,1,2,1,2,...) in the subdiagonal, with the rest zeros. - Gary W. Adamson, May 10 2008
This sequence is jointly generated with A135837 as a triangular array of coefficients of polynomials u(n,x): initially, u(1,x) = v(1,x) = 1; for n>1, u(n,x) = u(n-1,x) + x*v(n-1) and v(n,x) = 2*x*u(n-1,x) + v(n-1,x). See the Mathematica section. - Clark Kimberling, Feb 26 2012

Examples

			First few rows of the generating array are:
  1, 1, 1,  1,  1, ...
  1, 2, 3,  4,  5, ...
  1, 2, 5, 10, 17, ...
  1, 2, 5, 12, 25, ...
  1, 2, 5, 12, 29, ...
  ...
Taking difference terms of the columns, we get this triangle. First few rows are:
  1;
  1, 1;
  1, 2,  2;
  1, 3,  6,  2;
  1, 4, 12,  8,   4;
  1, 5, 20, 20,  20,  4;
  1, 6, 30, 40,  60, 24,  8;
  1, 7, 42, 70, 140, 84, 56, 8;
  ...
		

Crossrefs

Programs

  • Magma
    [2^Floor((k-1)/2)*Binomial(n-1, k-1): k in [1..n], n in [1..15]]; // G. C. Greubel, Oct 23 2021
    
  • Mathematica
    (* First program *)
    u[1, x_]:= 1; v[1, x_]:= 1; z = 13;
    u[n_, x_]:= u[n-1, x] + x*v[n-1, x];
    v[n_, x_]:= 2*x*u[n-1, x] + v[n-1, x];
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]    (* A117919 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]    (* A135837 *)
    (* Second program *)
    Table[2^Floor[(k-1)/2]*Binomial[n-1, k-1], {n,15}, {k,n}]//Flatten (* G. C. Greubel, Oct 23 2021 *)
  • Sage
    flatten([[2^((k-1)//2)*binomial(n-1,k-1) for k in (1..n)] for n in (1..15)]) # G. C. Greubel, Oct 23 2021

Formula

From G. C. Greubel, Oct 23 2021: (Start)
T(n, k) = 2^floor((k-1)/2)*binomial(n-1, k-1).
Sum_{k=0..n} T(n, k) = A000129(n). (End)

Extensions

Name changed and more terms added by G. C. Greubel, Oct 23 2021

A135838 Triangle read by rows: T(n,k) = 2^floor(n/2)*binomial(n-1,k-1).

Original entry on oeis.org

1, 2, 2, 2, 4, 2, 4, 12, 12, 4, 4, 16, 24, 16, 4, 8, 40, 80, 80, 40, 8, 8, 48, 120, 160, 120, 48, 8, 16, 112, 336, 560, 560, 336, 112, 16, 16, 128, 448, 896, 1120, 896, 448, 128, 16, 32, 288, 1152, 2688, 4032, 4032, 2688, 1152, 288, 32
Offset: 1

Views

Author

Gary W. Adamson, Dec 01 2007

Keywords

Examples

			First few rows of the triangle are:
  1;
  2,  2;
  2,  4,  2;
  4, 12, 12,  4;
  4, 16, 24, 16,  4;
  8, 40, 80, 80, 40, 8;
  ...
		

Crossrefs

Programs

  • Maple
    A135838 := proc(n,k)
        2^floor(n/2)*binomial(n-1,k-1) ;
    end proc:
    seq(seq( A135838(n,k),k=1..n),n=1..10) ; # R. J. Mathar, Aug 15 2022
  • Mathematica
    T[n_, k_]:= 2^Floor[n/2]*Binomial[n-1, k-1];
    Table[T[n, k], {n,12}, {k,n}] //Flatten (* G. C. Greubel, Feb 07 2022 *)
  • PARI
    A(n,k) = 2^(n\2)*binomial(n-1,k-1);
    concat(vector(10, n, vector(n, k, A(n,k))))  \\ Gheorghe Coserea, May 18 2016
    
  • Sage
    flatten([[2^(n//2)*binomial(n-1, k-1) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Feb 07 2022

Formula

M * Pascal's triangle as infinite lower triangular matrices, where M = a triangle with (1, 2, 2, 4, 4, 8, 8, 16, 16, ...) in the main diagonal and the rest zeros.
Sum_{k=1..n} T(n, k) = A094015(n-1).
From G. C. Greubel, Feb 07 2022: (Start)
T(n, n-k) = T(n, k).
T(n, 1) = A016116(n).
T(n, 2) = 2*A093968(n-1).
T(2*n-1, n) = A059304(n-1).
T(2*n, n) = 2*A069720(n). (End)
Showing 1-4 of 4 results.