A135853 A103516 * A007318 as an infinite lower triangular matrix.
1, 4, 2, 6, 6, 3, 8, 12, 12, 4, 10, 20, 30, 20, 5, 12, 30, 60, 60, 30, 6, 14, 42, 105, 140, 105, 42, 7, 16, 56, 168, 280, 280, 168, 56, 8, 18, 72, 252, 504, 630, 504, 252, 72, 9, 20, 90, 360, 840, 1260, 1260, 840, 360, 90, 10
Offset: 0
Examples
First few rows of the triangle are: 1; 4, 2; 6, 6, 3; 8, 12, 12, 4; 10, 20, 30, 20, 5; 12, 30, 60, 60, 30, 6; 14, 42, 105, 140, 105, 42, 7; ...
Links
- G. C. Greubel, Table of n, a(n) for the first 50 rows
Crossrefs
Programs
-
Mathematica
T[n_, k_]:= If[k==n, n+1, If[k==0, 2*(n+1), (k+1)*Binomial[n+1, k+1]]]; Table[T[n, k], {n,0,12}, {k,0,n}]//flatten (* G. C. Greubel, Dec 07 2016 *)
-
Sage
def A135853(n,k): if (n==0): return 1 elif (k==0): return 2*(n+1) else: return (k+1)*binomial(n+1, k+1) flatten([[A135853(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 06 2022
Formula
Sum_{k=0..n} T(n, k) = A135854(n).
T(n, k) = (k+1)*binomial(n+1, k+1), with T(n, n) = n+1, T(n, 0) = 2*(n+1). - G. C. Greubel, Dec 07 2016
T(n, 0) = A103517(n). - G. C. Greubel, Feb 06 2022