cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A135852 A007318 * A103516 as a lower triangular matrix.

Original entry on oeis.org

1, 3, 2, 8, 4, 3, 20, 6, 9, 4, 48, 8, 18, 16, 5, 112, 10, 30, 40, 25, 6, 256, 12, 45, 80, 75, 36, 7, 576, 14, 63, 140, 175, 126, 49, 8, 1280, 16, 84, 224, 350, 336, 196, 64, 9, 2816, 18, 108, 336, 630, 756, 588, 288, 81, 10
Offset: 0

Views

Author

Gary W. Adamson, Dec 01 2007

Keywords

Comments

Binomial transform of triangle A103516.

Examples

			First few rows of the triangle are:
    1;
    3,  2;
    8,  4,  3;
   20,  6,  9,  4;
   48,  8, 18, 16,  5;
  112, 10, 30, 40, 25,  6;
  256, 12, 45, 80, 75, 36,  7;
  ...
		

Crossrefs

Cf. A001792 (1st column), A099035 (row sums).

Programs

  • Mathematica
    T[n_, k_]:= If[n==0, 1, If[k==0, (n+2)*2^(n-1), (k+1)*Binomial[n, k]]];
    Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Dec 07 2016 *)
  • Sage
    def A135852(n,k):
        if (n==0): return 1
        elif (k==0): return (n+2)*2^(n-1)
        else: return (k+1)*binomial(n, k)
    flatten([[A135852(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 07 2022

Formula

T(n, k) = (A007318 * A103516)(n, k).
T(n, 0) = A001792(n).
Sum_{k=0..n} T(n, k) = A099035(n+1).
T(n, k) = (k+1)*binomial(n, k), with T(n, 0) = (n+2)*2^(n-1), T(n, n) = n+1. - G. C. Greubel, Dec 07 2016

Extensions

Offset changed to 0 by G. C. Greubel, Feb 07 2022

A135854 a(n) = (n+1)*(2^n+1) for n > 0 with a(0)=1.

Original entry on oeis.org

1, 6, 15, 36, 85, 198, 455, 1032, 2313, 5130, 11275, 24588, 53261, 114702, 245775, 524304, 1114129, 2359314, 4980755, 10485780, 22020117, 46137366, 96469015, 201326616, 419430425, 872415258, 1811939355, 3758096412
Offset: 0

Views

Author

Gary W. Adamson, Dec 01 2007

Keywords

Examples

			a(3) = 15 = sum of row 3 terms of triangle A135853: (6 + 6 + 3).
a(4) = 36 = (1, 3, 3, 1) dot (1, 5, 4, 8) = (1 + 15 + 12 + 8).
		

Crossrefs

Cf. A215149.
Row sums of triangle A135853.

Programs

  • Maple
    A135854:=n->(n+1)*(2^n+1): 1, seq(A135854(n), n=1..50); # Wesley Ivan Hurt, Dec 07 2016
  • Mathematica
    Join[{1}, LinearRecurrence[{6,-13,12,-4}, {6,15,36,85}, 25]] (* G. C. Greubel, Dec 07 2016 *)
  • PARI
    Vec((1-8*x^2+12*x^3-4*x^4)/((1-x)^2*(1-2*x)^2) + O(x^50)) \\ G. C. Greubel, Dec 07 2016

Formula

Binomial transform of [1, 5, 4, 8, 8, 12, 12, 16, 16, 20, 20, ...].
G.f.: 1 - x*(-6 + 21*x - 24*x^2 + 8*x^3) / ( (2*x-1)^2*(x-1)^2 ). - R. J. Mathar, Apr 04 2012
G.f.: (1 - 8*x^2 + 12*x^3 - 4*x^4)/((1-x)^2*(1-2*x)^2). - L. Edson Jeffery, Jan 14 2014
a(0) = 1, a(n) = (n+1)*(2^n+1), n>0. - L. Edson Jeffery, Jan 14 2014
E.g.f.: exp(x)*(1 + x + exp(x)*(1 + 2*x)) - 1. - Stefano Spezia, Dec 13 2021

Extensions

Corrected by R. J. Mathar, Apr 04 2012
Showing 1-2 of 2 results.