A135859 Row sums of triangle A135858.
1, 4, 13, 34, 73, 136, 229, 358, 529, 748, 1021, 1354, 1753, 2224, 2773, 3406, 4129, 4948, 5869, 6898, 8041, 9304, 10693, 12214, 13873, 15676, 17629, 19738, 22009, 24448, 27061, 29854, 32833, 36004, 39373, 42946, 46729, 50728, 54949
Offset: 1
Examples
a(3) = 13 = sum of row 3 terms of triangle A135858: (7, + 5 + 1). a(4) = 34 = (1, 3, 3, 1) dot (1, 3, 6, 6) = (1 + 9 + 18 + 6).
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- R. J. Mathar, The number of binary matrices..., Table 1 column 3.
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Crossrefs
Cf. A135858.
Programs
-
GAP
List([1..10^4], n-> 5*n - 2 + n^3 - 3*n^2); # Muniru A Asiru, Jan 24 2018
-
Magma
I:=[1, 4, 13, 34]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..50]]; // Vincenzo Librandi, Jun 29 2012
-
Maple
seq(5*n - 2 + n^3 - 3*n^2, n=1..10^2); # Muniru A Asiru, Jan 24 2018
-
Mathematica
CoefficientList[Series[(1+3*x^2+2*x^3)/(x-1)^4,{x,0,40}],x] (* Vincenzo Librandi, Jun 29 2012 *)
-
SageMath
[n^3 -3*n^2 +5*n -2 for n in (1..50)] # G. C. Greubel, Aug 11 2022
Formula
Row sums of triangle A135858. Binomial transform of [1, 3, 6, 6, 0, 0, 0, ...].
G.f.: x*(1+3*x^2+2*x^3) / (1-x)^4. - R. J. Mathar, Apr 04 2012
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Vincenzo Librandi, Jun 29 2012
a(n) = n^3 - 3*n^2 + 5*n - 2. - R. J. Mathar, Oct 20 2017
E.g.f.: 2 - (2 - 3*x - x^3)*exp(x). - G. C. Greubel, Aug 11 2022
Comments