cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A135859 Row sums of triangle A135858.

Original entry on oeis.org

1, 4, 13, 34, 73, 136, 229, 358, 529, 748, 1021, 1354, 1753, 2224, 2773, 3406, 4129, 4948, 5869, 6898, 8041, 9304, 10693, 12214, 13873, 15676, 17629, 19738, 22009, 24448, 27061, 29854, 32833, 36004, 39373, 42946, 46729, 50728, 54949
Offset: 1

Views

Author

Gary W. Adamson, Dec 01 2007

Keywords

Comments

Number of binary 3 X (n-1) matrices such that each row and column has at most one 1. - Dmitry Kamenetsky, Jan 20 2018

Examples

			a(3) = 13 = sum of row 3 terms of triangle A135858: (7, + 5 + 1).
a(4) = 34 = (1, 3, 3, 1) dot (1, 3, 6, 6) = (1 + 9 + 18 + 6).
		

Crossrefs

Cf. A135858.

Programs

  • GAP
    List([1..10^4], n-> 5*n - 2 + n^3 - 3*n^2); # Muniru A Asiru, Jan 24 2018
    
  • Magma
    I:=[1, 4, 13, 34]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..50]]; // Vincenzo Librandi, Jun 29 2012
    
  • Maple
    seq(5*n - 2 + n^3 - 3*n^2, n=1..10^2); # Muniru A Asiru, Jan 24 2018
  • Mathematica
    CoefficientList[Series[(1+3*x^2+2*x^3)/(x-1)^4,{x,0,40}],x] (* Vincenzo Librandi, Jun 29 2012 *)
  • SageMath
    [n^3 -3*n^2 +5*n -2 for n in (1..50)] # G. C. Greubel, Aug 11 2022

Formula

Row sums of triangle A135858. Binomial transform of [1, 3, 6, 6, 0, 0, 0, ...].
G.f.: x*(1+3*x^2+2*x^3) / (1-x)^4. - R. J. Mathar, Apr 04 2012
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Vincenzo Librandi, Jun 29 2012
a(n) = n^3 - 3*n^2 + 5*n - 2. - R. J. Mathar, Oct 20 2017
E.g.f.: 2 - (2 - 3*x - x^3)*exp(x). - G. C. Greubel, Aug 11 2022