A135974 a(n) = the smallest integer m > n such that d(m) > d(n), where d(n) = number of divisors of n.
2, 4, 4, 6, 6, 12, 8, 12, 10, 12, 12, 24, 14, 16, 16, 18, 18, 24, 20, 24, 24, 24, 24, 36, 26, 28, 28, 30, 30, 36, 32, 36, 36, 36, 36, 48, 38, 40, 40, 48, 42, 48, 44, 48, 48, 48, 48, 60, 50, 54, 52, 54, 54, 60, 56, 60, 60, 60, 60, 120, 62, 63, 64, 66, 66, 72, 68, 70, 70
Offset: 1
Keywords
Examples
a(6)=12 because 6 has 4 divisors and the smallest integer > 6 which has more than 4 divisors is 12.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
Programs
-
Maple
with(numtheory): a:=proc (n) local m: for m from n+1 while tau(m) <= tau(n) do end do: m end proc: seq(a(n),n=1..60); # Emeric Deutsch, Mar 21 2008
-
Mathematica
a = {}; For[n = 1, n < 70, n++, i = n + 1; While[ ! DivisorSigma[0, i] > DivisorSigma[0, n], i++ ]; AppendTo[a, i]]; a (* Stefan Steinerberger, Mar 16 2008 *) simd[n_]:=Module[{m=n+1,d=DivisorSigma[0,n]},While[DivisorSigma[0,m]<=d,m++];m]; Array[simd,70] (* Harvey P. Dale, Oct 03 2021 *)
Extensions
More terms from Stefan Steinerberger, Mar 16 2008