A135992 Positive Fibonacci numbers swapped in pairs.
1, 1, 3, 2, 8, 5, 21, 13, 55, 34, 144, 89, 377, 233, 987, 610, 2584, 1597, 6765, 4181, 17711, 10946, 46368, 28657, 121393, 75025, 317811, 196418, 832040, 514229, 2178309, 1346269, 5702887, 3524578, 14930352, 9227465, 39088169, 24157817
Offset: 1
Examples
a(7) = Fibonacci(8) = 21, a(8) = Fibonacci(7) = 13.
Links
- Index entries for linear recurrences with constant coefficients, signature (0,3,0,-1).
Programs
-
Maple
a[1]:=1: a[2]:=1: for n from 2 to 20 do a[2*n-1]:=a[2*n-2]+2*a[2*n-3]: a[2*n]:=a[2*n-1]-a[2*n-3] end do: seq(a[n],n=1..40); # Emeric Deutsch, Mar 22 2008
-
Mathematica
Flatten[{Last[#],First[#]}&/@Partition[Fibonacci[Range[40]],2]] (* Harvey P. Dale, Sep 16 2013 *) Table[(LucasL[n] - (-1)^n Fibonacci[n])/2, {n, 40}] (* Vladimir Reshetnikov, Sep 24 2016 *)
-
SageMath
[fibonacci(n-(-1)^n) for n in range (1,39)] # Giuseppe Coppoletta, Mar 04 2015
Formula
From Emeric Deutsch, Mar 22 2008: (Start)
a(2n-1) = Fibonacci(2n), a(2n) = Fibonacci(2n-1).
a(2n-1) = a(2n-2) + 2*a(2n-3), a(2n) = a(2n-1) - a(2n-3), a(1)=a(2)=1. (End)
G.f.: (x*(1+x-x^3)) / ((x^2+x-1)*(x^2-x-1)). - R. J. Mathar, Mar 08 2011
a(n) = (Lucas(n) - (-1)^n * Fibonacci(n))/2. - Vladimir Reshetnikov, Sep 24 2016
Extensions
More terms from Emeric Deutsch, Mar 22 2008
Comments