Original entry on oeis.org
0, 2, -1, 6, -3, 16, -8, 42, -21, 110, -55, 288, -144, 754, -377, 1974, -987, 5168, -2584, 13530, -6765, 35422, -17711, 92736, -46368, 242786, -121393, 635622, -317811, 1664080, -832040, 4356618, -2178309, 11405774, -5702887, 29860704, -14930352, 78176338
Offset: 0
-
Differences[Flatten[{Last[#],First[#]}&/@Partition[Fibonacci[ Range[ 40]],2]]] (* or *) LinearRecurrence[{0,3,0,-1},{0,2,-1,6},40] (* Harvey P. Dale, Sep 16 2013 *)
Table[(LucasL[n] - (-1)^n Fibonacci[n + 3])/2, {n, 0, 40}] (* Vladimir Reshetnikov, Sep 24 2016 *)
A108362
Pair reversal of Fibonacci numbers.
Original entry on oeis.org
1, 0, 2, 1, 5, 3, 13, 8, 34, 21, 89, 55, 233, 144, 610, 377, 1597, 987, 4181, 2584, 10946, 6765, 28657, 17711, 75025, 46368, 196418, 121393, 514229, 317811, 1346269, 832040, 3524578, 2178309, 9227465, 5702887, 24157817, 14930352, 63245986, 39088169, 165580141
Offset: 0
a(6) = Fibonacci(7) = 13, a(7) = Fibonacci(6) = 8.
-
a:= n-> (<<0|1>, <1|1>>^(n+(-1)^n))[1,2]:
seq(a(n), n=0..40); # Alois P. Heinz, Sep 27 2023
-
Flatten[Reverse/@Partition[Fibonacci[Range[0,40]],2]] (* or *) LinearRecurrence[{0,3,0,-1},{1,0,2,1},40] (* Harvey P. Dale, Sep 09 2015 *)
Table[((-1)^n Fibonacci[n] + LucasL[n])/2, {n, 0, 40}] (* Vladimir Reshetnikov, Sep 24 2016 *)
-
Vec((1-x^2+x^3)/(1-3*x^2+x^4) + O(x^50)) \\ Michel Marcus, Mar 04 2015
-
[fibonacci(n+(-1)^n) for n in range(39)] # Giuseppe Coppoletta, Mar 04 2015
A138123
Antidiagonal sums of a triangle of coefficients of recurrences of the Fibonacci sequence.
Original entry on oeis.org
1, 1, 3, 0, 3, 0, 7, 1, 11, 0, 17, 0, 29, 1, 47, 0, 75, 0, 123, 1, 199, 0, 321, 0, 521, 1, 843, 0, 1363, 0, 2207, 1, 3571, 0, 5777, 0, 9349, 1, 15127, 0, 24475, 0, 39603, 1, 64079, 0, 103681, 0, 167761, 1, 271443, 0, 439203, 0, 710647, 1, 1149851, 0, 1860497, 0
Offset: 1
The triangle T(p,m) with Lucas numbers on the diagonal starts
1, 1;
0, 3, 0,-1;
0, 0, 4, 0, 0, 1;
0, 0, 0, 7, 0, 0, 0,-1;
0, 0, 0, 0,11, 0, 0, 0, 0, 1;
The antidiagonal sums are a(1)=1. a(2)=0+1=1. a(3)=0+3=3. a(4)=0+0+0=0. a(5)=0+0+4-1=3.
Showing 1-3 of 3 results.
Comments