cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A135994 First differences of A135992.

Original entry on oeis.org

0, 2, -1, 6, -3, 16, -8, 42, -21, 110, -55, 288, -144, 754, -377, 1974, -987, 5168, -2584, 13530, -6765, 35422, -17711, 92736, -46368, 242786, -121393, 635622, -317811, 1664080, -832040, 4356618, -2178309, 11405774, -5702887, 29860704, -14930352, 78176338
Offset: 0

Views

Author

Paul Curtz, Mar 03 2008

Keywords

Crossrefs

Programs

  • Mathematica
    Differences[Flatten[{Last[#],First[#]}&/@Partition[Fibonacci[ Range[ 40]],2]]] (* or *) LinearRecurrence[{0,3,0,-1},{0,2,-1,6},40] (* Harvey P. Dale, Sep 16 2013 *)
    Table[(LucasL[n] - (-1)^n Fibonacci[n + 3])/2, {n, 0, 40}] (* Vladimir Reshetnikov, Sep 24 2016 *)

Formula

a(n) = 3*a(n-2) - a(n-4) for n>3. G.f.: -x*(x-2) / ((x^2-x-1)*(x^2+x-1)). [Colin Barker, Feb 02 2013]
From Vladimir Reshetnikov, Sep 24 2016: (Start)
a(n) = Sum_{k=1..n} (-1)^(k+1) * Fibonacci(k) * Lucas(n-k).
a(n) = (Lucas(n) - (-1)^n * Fibonacci(n+3))/2, where Fibonacci(n) = A000045(n), Lucas(n) = A000032(n). (End)

Extensions

More terms from Colin Barker, Feb 02 2013

A108362 Pair reversal of Fibonacci numbers.

Original entry on oeis.org

1, 0, 2, 1, 5, 3, 13, 8, 34, 21, 89, 55, 233, 144, 610, 377, 1597, 987, 4181, 2584, 10946, 6765, 28657, 17711, 75025, 46368, 196418, 121393, 514229, 317811, 1346269, 832040, 3524578, 2178309, 9227465, 5702887, 24157817, 14930352, 63245986, 39088169, 165580141
Offset: 0

Views

Author

Paul Barry, May 31 2005

Keywords

Comments

Here Fibonacci numbers are swapped in pairs, beginning with the pair (F(0),F(1)) changed in (F(1),F(0)). Similar to A135992, which starts switching F(1) and F(2). - Giuseppe Coppoletta, Mar 04 2015

Examples

			a(6) = Fibonacci(7) = 13, a(7) = Fibonacci(6) = 8.
		

Crossrefs

Programs

  • Maple
    a:= n-> (<<0|1>, <1|1>>^(n+(-1)^n))[1,2]:
    seq(a(n), n=0..40);  # Alois P. Heinz, Sep 27 2023
  • Mathematica
    Flatten[Reverse/@Partition[Fibonacci[Range[0,40]],2]] (* or *) LinearRecurrence[{0,3,0,-1},{1,0,2,1},40] (* Harvey P. Dale, Sep 09 2015 *)
    Table[((-1)^n Fibonacci[n] + LucasL[n])/2, {n, 0, 40}] (* Vladimir Reshetnikov, Sep 24 2016 *)
  • PARI
    Vec((1-x^2+x^3)/(1-3*x^2+x^4) + O(x^50)) \\ Michel Marcus, Mar 04 2015
  • Sage
    [fibonacci(n+(-1)^n) for n in range(39)] # Giuseppe Coppoletta, Mar 04 2015
    

Formula

G.f.: (1-x^2+x^3)/(1-3x^2+x^4).
a(n) = 3*a(n-2) - a(n-4) for n>3 with a(0)=1, a(1)=0, a(2)=2, a(3)=1.
a(n) = (sqrt(5)/2-1/2)^n * ((-1)^n/2-sqrt(5)/10)+(sqrt(5)/2+1/2)^n * (sqrt(5)*(-1)^n/10+1/2).
From Giuseppe Coppoletta, Mar 04 2015: (Start)
a(2n) = A000045(2n+1), a(2n+1) = A000045(2n).
a(2n) = a(2n-1) + 2*a(2n-2), a(2n+1) = (a(2n) + a(2n-1))/2. (End)
a(n) = ((-1)^n * Fibonacci(n) + Lucas(n))/2. - Vladimir Reshetnikov, Sep 24 2016

A138123 Antidiagonal sums of a triangle of coefficients of recurrences of the Fibonacci sequence.

Original entry on oeis.org

1, 1, 3, 0, 3, 0, 7, 1, 11, 0, 17, 0, 29, 1, 47, 0, 75, 0, 123, 1, 199, 0, 321, 0, 521, 1, 843, 0, 1363, 0, 2207, 1, 3571, 0, 5777, 0, 9349, 1, 15127, 0, 24475, 0, 39603, 1, 64079, 0, 103681, 0, 167761, 1, 271443, 0, 439203, 0, 710647, 1, 1149851, 0, 1860497, 0
Offset: 1

Views

Author

Paul Curtz, May 04 2008

Keywords

Comments

Consider the irregular sparse triangle T(p,p) = A000204(p), T(p,2p)= -A033999(p)=(-1)^(p+1), T(p,m) =0 else; 1<=m<=2p, p>=1. Then a(n)=sum_{m=1..[2(n+1)/3]} T(1+n-m,m).
The T are coefficients in recurrences f(n)=sum_{m=1..2p} T(p,m)*f(n-m).
The recurrence for p=1, f(n)=f(n-1)+f(n-2), is satisfied by the Fibonacci sequence A000045. The recurrence for p=2, f(n)=3f(n-2)-f(n-4), is satisfied by A005013, A005247, A075091, A075270, A108362 and A135992.
Conjecture: The Fibonacci sequence F obeys all the recurrences: A000045(n)=F(n)= L(p)*F(n-p)-(-1)^p*F(n-2p), any p>0, L=A000204.
[Proof: conjecture is equivalent to the existence of a g.f. of F with denominator 1-L(p)x^p+(-1)^p*x^(2p). Since 1-x-x^2 is known to be a denominator of such a g.f. of A000045, the conjecture is that 1-L(p)*x^p+(-1)^p*x^(2p) can be reduced to 1-x-x^2. One finds: {1-L(p)*x^p+(-1)^p*x^(2p)}/(1-x-x^2) = sum{n=0..p-1}F(n+1)x^n-sum{n=0..p-2} (-1)^(n+p)F(n+1)x^(2p-n-2) is a polynomial with integer coefficients, which is proved by multiplication with 1-x-x^2 and via F(n)+F(n+1)=F(n+2) and L(n)=F(n-1)+F(n+1). - R. J. Mathar, Jul 10 2008].
Conjecture: The Lucas sequence L also obeys all the recurrences: L(n)= L(p)*L(n-p)-(-1)^p*L(n-2p), any p>0, L=A000204.

Examples

			The triangle T(p,m) with Lucas numbers on the diagonal starts
  1, 1;
  0, 3, 0,-1;
  0, 0, 4, 0, 0, 1;
  0, 0, 0, 7, 0, 0, 0,-1;
  0, 0, 0, 0,11, 0, 0, 0, 0, 1;
The antidiagonal sums are a(1)=1. a(2)=0+1=1. a(3)=0+3=3. a(4)=0+0+0=0. a(5)=0+0+4-1=3.
		

Formula

Row sums: Sum_{m=1..2p} T(p,m) = A098600(p).
Conjectures from Chai Wah Wu, Apr 15 2024: (Start)
a(n) = a(n-2) - a(n-3) + a(n-4) + a(n-5) + a(n-7) for n > 7.
G.f.: x*(-x^5 - 2*x^2 - x - 1)/((x + 1)*(x^2 - x + 1)*(x^4 + x^2 - 1)). (End)

Extensions

Edited and extended by R. J. Mathar, Jul 10 2008
Showing 1-3 of 3 results.