A136061 Primes p such that (p+4)/5 is also prime.
11, 31, 61, 151, 181, 211, 331, 541, 631, 691, 751, 811, 991, 1051, 1201, 1381, 1531, 1741, 1831, 1861, 2161, 2281, 2311, 2731, 2851, 3001, 3061, 3301, 3361, 3541, 3631, 3691, 3931, 4051, 4111, 4261, 4591, 4831, 4951, 5101, 5431, 5581, 5641, 5851, 6151
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
GAP
A136061:=Filtered(Filtered([1..10^6],IsPrime),p->IsPrime((p+4)/5)); # Muniru A Asiru, Oct 10 2017
-
Mathematica
n = 2; a = {}; Do[If[PrimeQ[(Prime[k] + 2n)/(2n + 1)], AppendTo[a, Prime[k]]], {k, 1, 1500}]; a Select[Prime[Range[400]], PrimeQ[(# + 4) / 5]&] (* Vincenzo Librandi, Apr 14 2013 *)
-
PARI
{forprime(p=1,1e4/*default(primelimit)*/, p%5-1 & next; isprime(p\5+1) & print1(p","))} \\ M. F. Hasler, Feb 26 2012
Comments