A135771 Terms in A136112 which are not in A135768.
5, 23, 51, 71, 72, 99, 123, 239, 263, 311, 359, 479, 599, 699, 743, 863, 911, 1031, 1103, 1151, 1431, 1563, 1583, 1823, 1851, 1863, 2111, 2543, 2663, 3023, 3119, 3191, 3291, 3671, 3719, 3863, 4131, 4203, 4271, 4463, 4671, 4703, 5039, 5231, 5351, 5391, 5399
Offset: 1
Keywords
Examples
The first terms of this sequence correspond to the following elements of A136113: P_5 = P_7 - P_5, P_23 = P_24 - P_7, P_51 = P_66 - P_42, P_71 = P_74 - P_21, P_72 = P_80 - P_35, P_99 = P_104 - P_32, P_123 = P_144 - P_75, P_239 = P_249 - P_70, P_263 = P_274 - P_77, P_311 = P_324 - P_91, P_359 = P_374 - P_10.
Links
- Donovan Johnson, Table of n, a(n) for n = 1..200
Programs
-
PARI
P(n)=n*(3*n-1)/2 isPent(t)=P(sqrtint((t*2)\3)+1)==t {for( i=1,999, for( j=1,i-1, isPent(P(i)+P(j))|next; for( k=i+1,(P(i)-1)\3, isPent(P(i)+P(k))&next(3)); print1(i", "); next(2)))}
Comments