A136157 Triangle by columns, (3, 1, 0, 0, 0, ...) in every column.
3, 1, 3, 0, 1, 3, 0, 0, 1, 3, 0, 0, 0, 1, 3, 0, 0, 0, 0, 1, 3, 0, 0, 0, 0, 0, 1, 3, 0, 0, 0, 0, 0, 0, 1, 3, 0, 0, 0, 0, 0, 0, 0, 1, 3, 0, 0, 0, 0, 0, 0, 0, 0, 1, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 3
Offset: 0
Examples
First few rows of the triangle: 3; 1, 3; 0, 1, 3; 0, 0, 1, 3; 0, 0, 0, 1, 3; 0, 0, 0, 0, 1, 3; ...
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Crossrefs
Cf. A136158.
Programs
-
Magma
function T(n,k) // T = A136157 if k gt n-2 then return 2 + (-1)^(n+k); else return 0; end if; end function; [T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Dec 26 2023
-
Mathematica
Table[PadLeft[{1,3},n,{0}],{n,0,20}]//Flatten (* Harvey P. Dale, Apr 04 2018 *)
-
SageMath
def T(n,k): # T = A136157 if k>n-2: return 2 + (-1)^(n+k) else: return 0 flatten([[T(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Dec 26 2023
Formula
From G. C. Greubel, Dec 26 2023: (Start)
T(n, k) = 3 if k = n, T(n, k) = 1 if k = n-1, otherwise T(n, k) = 0.
T(n, k) = 2 + (-1)^(n+k) for k >= n-1, otherwise T(n, k) = 0.
Sum_{k=0..n} T(n, k) = 4 - [n=0].
Sum_{k=0..n} (-1)^k*T(n, k) = (-2)^n + [n=0].
Sum_{k=0..floor(n/2)} T(n-k, k) = 2 + (-1)^n.
Sum_{k=0..floor(n/2)} (-1)^k*T(n-k, k) = (2 + (-1)^n)*(-1)^floor(n/2). (End)
Extensions
Offset changed by G. C. Greubel, Dec 26 2023
Comments