cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A136220 Triangle P, read by rows, where column k of P^3 equals column 0 of P^(3k+3) such that column 0 of P^3 equals column 0 of P shift one row up, with P(0,0)=1.

Original entry on oeis.org

1, 1, 1, 3, 2, 1, 15, 10, 3, 1, 108, 75, 21, 4, 1, 1036, 753, 208, 36, 5, 1, 12569, 9534, 2637, 442, 55, 6, 1, 185704, 146353, 40731, 6742, 805, 78, 7, 1, 3247546, 2647628, 742620, 122350, 14330, 1325, 105, 8, 1, 65762269, 55251994, 15624420, 2571620
Offset: 0

Views

Author

Paul D. Hanna, Dec 25 2007, corrected Jan 24 2008

Keywords

Examples

			Triangle P begins:
         1;
         1,        1;
         3,        2,        1;
        15,       10,        3,       1;
       108,       75,       21,       4,      1;
      1036,      753,      208,      36,      5,     1;
     12569,     9534,     2637,     442,     55,     6,    1;
    185704,   146353,    40731,    6742,    805,    78,    7,   1;
   3247546,  2647628,   742620,  122350,  14330,  1325,  105,   8, 1;
  65762269, 55251994, 15624420, 2571620, 298240, 26943, 2030, 136, 9, 1; ...
where column k of P = column 0 of U^(k+1) and U = A136228.
Matrix cube, W = P^3 (A136231), begins:
       1;
       3,     1;
      15,     6,     1;
     108,    48,     9,    1;
    1036,   495,    99,   12,   1;
   12569,  6338,  1323,  168,  15,  1;
  185704, 97681, 21036, 2754, 255, 18, 1; ...
where column k of P^3 = column 0 of P^(3k+3) such that
column 0 of P^3 = column 0 of P shift one row up.
Matrix square, P^2 (A136225), begins:
      1;
      2,     1;
      8,     4,    1;
     49,    26,    6,    1;
    414,   232,   54,    8,   1;
   4529,  2657,  629,   92,  10,  1;
  61369, 37405, 9003, 1320, 140, 12, 1; ...
where column k of P^2 = column 0 of V^(k+1) and
triangle V = A136230 begins:
      1;
      2,     1;
      8,     5,     1;
     49,    35,     8,    1;
    414,   325,    80,   11,   1;
   4529,  3820,   988,  143,  14,  1;
  61369, 54800, 14696, 2200, 224, 17, 1; ...
where column k of V = column 0 of P^(3k+2).
Related triangle U = A136228 begins:
      1;
      1,     1;
      3,     4,    1;
     15,    24,    7,    1;
    108,   198,   63,   10,   1;
   1036,  2116,  714,  120,  13,  1;
  12569, 28052, 9884, 1725, 195, 16, 1; ...
where column k of U = column 0 of P^(3k+1)
and column k of P = column 0 of U^(k+1).
Surprisingly, column 0 of P is also found in square A136217:
(1),(1),1,(1),1,(1),1,(1),1,1,(1),1,1,(1),1,1,(1),1,1,1,(1),...;
(1),(2),3,(4),5,(6),7,(8),9,10,(11),12,13,(14),15,16,(17),...;
(3),(8),15,(24),34,(46),59,(74),90,108,(127),147,169,(192),...;
(15),(49),108,(198),306,(453),622,(838),1080,1377,(1704),...;
(108),(414),1036,(2116),3493,(5555),8040,(11477),15483,...;
(1036),(4529),12569,(28052),48800,(82328),124335,(186261),...;
(12569),(61369),185704,(446560),811111,(1438447),2250731,...;
...
and has a recurrence similar to that of square array A136212
which generates the triple factorials.
		

Crossrefs

Related tables: A136228 (U), A136230 (V), A136231 (W=P^3), A136217, A136218.
Variants: A091351, A135880.

Programs

  • PARI
    {T(n,k)=local(P=Mat(1),U,PShR);if(n>0,for(i=0,n, PShR=matrix(#P,#P, r,c,
    if(r>=c,if(r==c,1,if(c==1,0,P[r-1,c-1]))));U=P*PShR^2; U=matrix(#P+1,
    #P+1, r,c, if(r>=c, if(r<#P+1,U[r,c], if(c==1,(P^3)[ #P,1],(P^(3*c-1))[r-c+1,
    1])))); P=matrix(#U, #U, r,c, if(r>=c, if(r<#R,P[r,c], (U^c)[r-c+1,
    1])))));P[n+1,k+1]}

Formula

Denote this triangle by P and define as follows.
Let [P^m]_k denote column k of matrix power P^m,
so that triangular matrix W = A136231 may be defined by
[W]_k = [P^(3k+3)]_0, for k>=0, such that
(1) W = P^3 and (2) [W]_0 = [P]_0 shift up one row.
Define the triangular matrix U = A136228 by
[U]_k = [P^(3k+1)]_0, for k>=0,
and the triangular matrix V = A136230 by
[V]_k = [P^(3k+2)]_0, for k>=0.
Then columns of P may be formed from powers of U:
[P]_k = [U^(k+1)]_0, for k>=0,
and columns of P^2 may be formed from powers of V:
[P^2]_k = [V^(k+1)]_0, for k>=0.
Further, columns of powers of P, U, V and W satisfy:
[U^(j+1)]_k = [P^(3k+1)]_j,
[V^(j+1)]_k = [P^(3k+2)]_j,
[W^(j+1)]_k = [P^(3k+3)]_j,
[W^(j+1)]_k = [W^(k+1)]_j,
[P^(3j+3)]_k = [P^(3k+3)]_j, for all j>=0, k>=0.
Also, we have the column transformations:
U * [P]k = [P]{k+1},
V * [P^2]k = [P^2]{k+1},
W * [P^3]k = [P^3]{k+1},
W * [U]k = [U]{k+1},
W * [V]k = [V]{k+1},
W * [W]k = [W]{k+1}, for all k>=0.
Other identities include the matrix products:
U = P * [P^2 shift right one column];
V = P^2 * [P shift right one column];
V = U * [U shift down one row];
W = V * [V shift down one row];
where the triangle transformations "shift right" and "shift down" are illustrated in examples of entries A136228 (U) and A136230 (V).

Extensions

Typo in example corrected by Paul D. Hanna, Mar 27 2010

A136221 Column 0 of triangles A136220 and A136228; also equals column 0 of tables A136217 and A136218.

Original entry on oeis.org

1, 1, 3, 15, 108, 1036, 12569, 185704, 3247546, 65762269, 1515642725, 39211570981, 1125987938801, 35554753133312, 1224882431140838, 45731901253649898, 1839804317195739634, 79355626796692509253, 3653687500034925338348
Offset: 0

Views

Author

Paul D. Hanna, Dec 25 2007

Keywords

Comments

P = A136220 is a triangular matrix where column k of P^3 equals column 0 of P^(3k+3) such that column 0 of P^3 equals column 0 of P shift one place left. Tables A136217 and A136218 are defined by recurrences seemingly unrelated to the matrix product recurrence of A136220 and yet they all generate this same sequence in column 0.

Examples

			Equals column 0 of triangle P=A136220, which begins:
1;
1, 1;
3, 2, 1;
15, 10, 3, 1;
108, 75, 21, 4, 1;
1036, 753, 208, 36, 5, 1;
12569, 9534, 2637, 442, 55, 6, 1;
185704, 146353, 40731, 6742, 805, 78, 7, 1; ...
where column k of P^3 = column 0 of P^(3k+3) such that
column 0 of P^3 = column 0 of P shift one place left.
Surprisingly, column 0 of P is also found in square A136218:
(1),(1),1,(1),1,(1),1,(1),1,1,(1),1,1,(1),1,1,(1),1,1,1,(1),...;
(1),(2),3,(4),5,(6),7,(8),9,10,(11),12,13,(14),15,16,(17),...;
(3),(8),15,(24),34,(46),59,(74),90,108,(127),147,169,(192),...;
(15),(49),108,(198),306,(453),622,(838),1080,1377,(1704),...;
(108),(414),1036,(2116),3493,(5555),8040,(11477),15483,...;
(1036),(4529),12569,(28052),48800,(82328),124335,(186261),...;
(12569),(61369),185704,(446560),811111,(1438447),2250731,...;
...
and has a recurrence similar to that of square array A136212
which generates the triple factorials.
		

Crossrefs

Cf. A136220 (P), A136228 (U), A136231 (W=P^3).
Cf. other columns of P: A136222, A136223, A136224.
Cf. related tables: A136217, A136218.
Cf. variants: A091352, A135881.

Programs

  • PARI
    /* Generate using matrix product recurrences of triangle A136220: */ {a(n)=local(P=Mat(1),U,PShR);if(n>0,for(i=0,n, PShR=matrix(#P,#P, r,c, if(r>=c,if(r==c,1,if(c==1,0,P[r-1,c-1]))));U=P*PShR^2; U=matrix(#P+1, #P+1, r,c, if(r>=c, if(r<#P+1,U[r,c], if(c==1,(P^3)[ #P,1],(P^(3*c-1))[r-c+1,1])))); P=matrix(#U, #U, r,c, if(r>=c, if(r<#R,P[r,c], (U^c)[r-c+1,1])))));P[n+1,1]}
    
  • PARI
    /* Generated as column 0 in triangle A136218 (faster): */ {a(n)=local(A=[1],B);if(n>0,for(i=1,n,m=1;B=[0]; for(j=1,#A,if(j+m-1==(m*(m+7))\6,m+=1;B=concat(B,0));B=concat(B,A[j])); A=Vec(Polrev(Vec(Pol(B)/(1-x+O(x^#B)))))));A[1]}

A136222 Column 1 of triangle A136220; also equals column 0 of U^2 = A136233 where U = A136228.

Original entry on oeis.org

1, 2, 10, 75, 753, 9534, 146353, 2647628, 55251994, 1308089217, 34669446816, 1017575959652, 32778617719852, 1150083357364646, 43669478546754372, 1784505372378097160, 78098473768259907870, 3645038134074497689782
Offset: 0

Views

Author

Paul D. Hanna, Dec 25 2007

Keywords

Comments

P = A136220 is a triangular matrix where column k of P^3 equals column 0 of P^(3k+3) such that column 0 of P^3 equals column 0 of P shift one place left.

Crossrefs

Cf. A136220 (P), A136228 (U), A136233 (U^2); other columns of P: A136221, A136223, A136224.

Programs

  • PARI
    {a(n)=local(P=Mat(1),U,PShR);if(n==0,1,for(i=0,n, PShR=matrix(#P,#P, r,c, if(r>=c,if(r==c,1,if(c==1,0,P[r-1,c-1]))));U=P*PShR^2; U=matrix(#P+1, #P+1, r,c, if(r>=c, if(r<#P+1,U[r,c], if(c==1,(P^3)[ #P,1],(P^(3*c-1))[r-c+1,1])))); P=matrix(#U, #U, r,c, if(r>=c, if(r<#U,P[r,c], (U^c)[r-c+1,1]))));P[n+2,2])}

A136224 Column 3 of triangle A136220; also equals column 0 of U^4 where U = A136228.

Original entry on oeis.org

1, 4, 36, 442, 6742, 122350, 2571620, 61426282, 1643616044, 48708655760, 1583981114700, 56090062706944, 2148733943483128, 88554674908328872, 3907197406833303644, 183780036631720987407, 9180785177015520963631
Offset: 0

Views

Author

Paul D. Hanna, Dec 25 2007

Keywords

Comments

P = A136220 is a triangular matrix where column k of P^3 equals column 0 of P^(3k+3) such that column 0 of P^3 equals column 0 of P shift one place left.

Crossrefs

Cf. A136220 (P), A136228 (U); other columns of P: A136221, A136222, A136223.

Programs

  • PARI
    {a(n)=local(P=Mat(1),U,PShR);if(n==0,1,for(i=0,n+2, PShR=matrix(#P,#P, r,c, if(r>=c,if(r==c,1,if(c==1,0,P[r-1,c-1]))));U=P*PShR^2; U=matrix(#P+1, #P+1, r,c, if(r>=c, if(r<#P+1,U[r,c], if(c==1,(P^3)[ #P,1],(P^(3*c-1))[r-c+1,1])))); P=matrix(#U, #U, r,c, if(r>=c, if(r<#U,P[r,c], (U^c)[r-c+1,1]))));P[n+4,4])}

A136236 Matrix cube of triangle U = A136228, read by rows.

Original entry on oeis.org

1, 3, 1, 21, 12, 1, 208, 156, 21, 1, 2637, 2350, 399, 30, 1, 40731, 41034, 8029, 750, 39, 1, 742620, 821562, 177198, 18865, 1209, 48, 1, 15624420, 18631332, 4317936, 502335, 36478, 1776, 57, 1, 372892266, 473187270, 115949841, 14390880, 1136811
Offset: 0

Views

Author

Paul D. Hanna, Feb 07 2008

Keywords

Examples

			This triangle, U^3, begins:
1;
3, 1;
21, 12, 1;
208, 156, 21, 1;
2637, 2350, 399, 30, 1;
40731, 41034, 8029, 750, 39, 1;
742620, 821562, 177198, 18865, 1209, 48, 1;
15624420, 18631332, 4317936, 502335, 36478, 1776, 57, 1;
372892266, 473187270, 115949841, 14390880, 1136811, 62488, 2451, 66, 1;
where column 0 of U^3 = column 2 of P = A136220.
		

Crossrefs

Cf. A136223 (column 0); related tables: A136220 (P), A136228 (U), A136230 (V), A136231 (W=P^3), A136233 (U^2).

Programs

  • PARI
    {T(n,k)=local(P=Mat(1),U=Mat(1),PShR);if(n>0,for(i=0,n, PShR=matrix(#P,#P, r,c, if(r>=c,if(r==c,1,if(c==1,0,P[r-1,c-1]))));U=P*PShR^2; U=matrix(#P+1, #P+1, r,c, if(r>=c, if(r<#P+1,U[r,c], if(c==1,(P^3)[ #P,1],(P^(3*c-1))[r-c+1,1])))); P=matrix(#U, #U, r,c, if(r>=c, if(r<#R,P[r,c], (U^c)[r-c+1,1])))));(U^3)[n+1,k+1]}

Formula

Column k of U^3 (this triangle) = column 2 of P^(3k+1), where P = triangle A136220.
Showing 1-5 of 5 results.