A136228 Triangle U, read by rows, where column k of U^(j+1) = column j of P^(3k+1) for j>=0, k>=0 and P=A136220.
1, 1, 1, 3, 4, 1, 15, 24, 7, 1, 108, 198, 63, 10, 1, 1036, 2116, 714, 120, 13, 1, 12569, 28052, 9884, 1725, 195, 16, 1, 185704, 446560, 162729, 29190, 3393, 288, 19, 1, 3247546, 8325700, 3117660, 571225, 67756, 5880, 399, 22, 1, 65762269, 178284892
Offset: 0
Examples
Triangle U begins: 1; 1, 1; 3, 4, 1; 15, 24, 7, 1; 108, 198, 63, 10, 1; 1036, 2116, 714, 120, 13, 1; 12569, 28052, 9884, 1725, 195, 16, 1; 185704, 446560, 162729, 29190, 3393, 288, 19, 1; 3247546, 8325700, 3117660, 571225, 67756, 5880, 399, 22, 1; ... where column k of U = column 0 of P^(3k+1) and triangle P = A136220 begins: 1; 1, 1; 3, 2, 1; 15, 10, 3, 1; 108, 75, 21, 4, 1; 1036, 753, 208, 36, 5, 1; 12569, 9534, 2637, 442, 55, 6, 1; 185704, 146353, 40731, 6742, 805, 78, 7, 1; ... where column k of P = column 0 of U^(k+1). Also, this triangle U can be obtained by the matrix product: U = P * [P^2 shift right one column] where P^2 shift right one column begins: 1; 0, 1; 0, 2, 1; 0, 8, 4, 1; 0, 49, 26, 6, 1; 0, 414, 232, 54, 8, 1; 0, 4529, 2657, 629, 92, 10, 1; 0, 61369, 37405, 9003, 1320, 140, 12, 1; ...
Crossrefs
Programs
-
PARI
{T(n,k)=local(P=Mat(1),U=Mat(1),PShR);if(n>0,for(i=0,n, PShR=matrix(#P,#P, r,c, if(r>=c,if(r==c,1,if(c==1,0,P[r-1,c-1]))));U=P*PShR^2; U=matrix(#P+1, #P+1, r,c, if(r>=c, if(r<#P+1,U[r,c], if(c==1,(P^3)[ #P,1],(P^(3*c-1))[r-c+1,1])))); P=matrix(#U, #U, r,c, if(r>=c, if(r<#R,P[r,c], (U^c)[r-c+1,1])))));U[n+1,k+1]}
Comments