cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 19 results. Next

A136228 Triangle U, read by rows, where column k of U^(j+1) = column j of P^(3k+1) for j>=0, k>=0 and P=A136220.

Original entry on oeis.org

1, 1, 1, 3, 4, 1, 15, 24, 7, 1, 108, 198, 63, 10, 1, 1036, 2116, 714, 120, 13, 1, 12569, 28052, 9884, 1725, 195, 16, 1, 185704, 446560, 162729, 29190, 3393, 288, 19, 1, 3247546, 8325700, 3117660, 571225, 67756, 5880, 399, 22, 1, 65762269, 178284892
Offset: 0

Views

Author

Paul D. Hanna, Jan 28 2008

Keywords

Examples

			Triangle U begins:
1;
1, 1;
3, 4, 1;
15, 24, 7, 1;
108, 198, 63, 10, 1;
1036, 2116, 714, 120, 13, 1;
12569, 28052, 9884, 1725, 195, 16, 1;
185704, 446560, 162729, 29190, 3393, 288, 19, 1;
3247546, 8325700, 3117660, 571225, 67756, 5880, 399, 22, 1; ...
where column k of U = column 0 of P^(3k+1) and
triangle P = A136220 begins:
1;
1, 1;
3, 2, 1;
15, 10, 3, 1;
108, 75, 21, 4, 1;
1036, 753, 208, 36, 5, 1;
12569, 9534, 2637, 442, 55, 6, 1;
185704, 146353, 40731, 6742, 805, 78, 7, 1; ...
where column k of P = column 0 of U^(k+1).
Also, this triangle U can be obtained by the matrix product:
U = P * [P^2 shift right one column]
where P^2 shift right one column begins:
1;
0, 1;
0, 2, 1;
0, 8, 4, 1;
0, 49, 26, 6, 1;
0, 414, 232, 54, 8, 1;
0, 4529, 2657, 629, 92, 10, 1;
0, 61369, 37405, 9003, 1320, 140, 12, 1; ...
		

Crossrefs

Cf. A136221 (column 0), A136229 (column 1); related tables: A136220 (P), A136225 (P^2), A136230 (V), A136231 (W=P^3), A136217, A136218.

Programs

  • PARI
    {T(n,k)=local(P=Mat(1),U=Mat(1),PShR);if(n>0,for(i=0,n, PShR=matrix(#P,#P, r,c, if(r>=c,if(r==c,1,if(c==1,0,P[r-1,c-1]))));U=P*PShR^2; U=matrix(#P+1, #P+1, r,c, if(r>=c, if(r<#P+1,U[r,c], if(c==1,(P^3)[ #P,1],(P^(3*c-1))[r-c+1,1])))); P=matrix(#U, #U, r,c, if(r>=c, if(r<#R,P[r,c], (U^c)[r-c+1,1])))));U[n+1,k+1]}

Formula

This triangle U = P * [P^2 shift right one column] (see example), where P = A136220 and P^2 = A136225.

A136230 Triangle V, read by rows, where column k of V^(j+1) = column j of P^(3k+2), for j>=0, k>=0 and where P=A136220.

Original entry on oeis.org

1, 2, 1, 8, 5, 1, 49, 35, 8, 1, 414, 325, 80, 11, 1, 4529, 3820, 988, 143, 14, 1, 61369, 54800, 14696, 2200, 224, 17, 1, 996815, 932761, 257264, 39468, 4123, 323, 20, 1, 18931547, 18426632, 5198680, 812801, 86506, 6919, 440, 23, 1, 412345688
Offset: 0

Views

Author

Paul D. Hanna, Jan 28 2008

Keywords

Examples

			This triangle V begins:
1;
2, 1;
8, 5, 1;
49, 35, 8, 1;
414, 325, 80, 11, 1;
4529, 3820, 988, 143, 14, 1;
61369, 54800, 14696, 2200, 224, 17, 1;
996815, 932761, 257264, 39468, 4123, 323, 20, 1;
18931547, 18426632, 5198680, 812801, 86506, 6919, 440, 23, 1; ...
where column k of V = column 0 of P^(3k+2) and
triangle P = A136220 begins:
1;
1, 1;
3, 2, 1;
15, 10, 3, 1;
108, 75, 21, 4, 1;
1036, 753, 208, 36, 5, 1;
12569, 9534, 2637, 442, 55, 6, 1; ...
where column k of P^2 = column 0 of V^(k+1).
Also, this triangle V equals the matrix product:
V = P^2 * [P shift right one column]
where P^2 = A136225 begins:
1;
2, 1;
8, 4, 1;
49, 26, 6, 1;
414, 232, 54, 8, 1;
4529, 2657, 629, 92, 10, 1;
61369, 37405, 9003, 1320, 140, 12, 1; ...
and P shift right one column begins:
1;
0, 1;
0, 1, 1;
0, 3, 2, 1;
0, 15, 10, 3, 1;
0, 108, 75, 21, 4, 1;
0, 1036, 753, 208, 36, 5, 1; ...
Also, this triangle V equals the matrix product:
V = U * [U shift down one row]
where triangle U = A136228 begins:
1;
1, 1;
3, 4, 1;
15, 24, 7, 1;
108, 198, 63, 10, 1;
1036, 2116, 714, 120, 13, 1; ...
and U shift down one row begins:
1;
1, 1;
1, 1, 1;
3, 4, 1, 1;
15, 24, 7, 1, 1;
108, 198, 63, 10, 1, 1;
1036, 2116, 714, 120, 13, 1, 1; ...
		

Crossrefs

Cf. A136226 (column 0), A136229 (column 1); related tables: A136220 (P), A136225 (P^2), A136230 (V), A136231 (W=P^3), A136234 (V^2), A136237 (V^3); A136217, A136218.

Programs

  • PARI
    {T(n,k)=local(P=Mat(1),U=Mat(1),V=Mat(1),PShR);if(n>0,for(i=0,n, PShR=matrix(#P,#P, r,c, if(r>=c,if(r==c,1,if(c==1,0,P[r-1,c-1])))); U=P*PShR^2;V=P^2*PShR; U=matrix(#P+1, #P+1, r,c, if(r>=c, if(r<#P+1,U[r,c], if(c==1,(P^3)[ #P,1],(P^(3*c-1))[r-c+1,1])))); V=matrix(#P+1, #P+1, r,c, if(r>=c, if(r<#P+1,V[r,c], if(c==1,(P^3)[ #P,1],(P^(3*c-2))[r-c+1,1])))); P=matrix(#U, #U, r,c, if(r>=c, if(r<#R,P[r,c], (U^c)[r-c+1,1])))));V[n+1,k+1]}

Formula

Triangle W=P^3=A136231 transforms column k of V into column k+1 of V. This triangle equals the matrix products: V = P^2 * [P shift right one column] and V = U * [U shift down one row] (see examples).

A136221 Column 0 of triangles A136220 and A136228; also equals column 0 of tables A136217 and A136218.

Original entry on oeis.org

1, 1, 3, 15, 108, 1036, 12569, 185704, 3247546, 65762269, 1515642725, 39211570981, 1125987938801, 35554753133312, 1224882431140838, 45731901253649898, 1839804317195739634, 79355626796692509253, 3653687500034925338348
Offset: 0

Views

Author

Paul D. Hanna, Dec 25 2007

Keywords

Comments

P = A136220 is a triangular matrix where column k of P^3 equals column 0 of P^(3k+3) such that column 0 of P^3 equals column 0 of P shift one place left. Tables A136217 and A136218 are defined by recurrences seemingly unrelated to the matrix product recurrence of A136220 and yet they all generate this same sequence in column 0.

Examples

			Equals column 0 of triangle P=A136220, which begins:
1;
1, 1;
3, 2, 1;
15, 10, 3, 1;
108, 75, 21, 4, 1;
1036, 753, 208, 36, 5, 1;
12569, 9534, 2637, 442, 55, 6, 1;
185704, 146353, 40731, 6742, 805, 78, 7, 1; ...
where column k of P^3 = column 0 of P^(3k+3) such that
column 0 of P^3 = column 0 of P shift one place left.
Surprisingly, column 0 of P is also found in square A136218:
(1),(1),1,(1),1,(1),1,(1),1,1,(1),1,1,(1),1,1,(1),1,1,1,(1),...;
(1),(2),3,(4),5,(6),7,(8),9,10,(11),12,13,(14),15,16,(17),...;
(3),(8),15,(24),34,(46),59,(74),90,108,(127),147,169,(192),...;
(15),(49),108,(198),306,(453),622,(838),1080,1377,(1704),...;
(108),(414),1036,(2116),3493,(5555),8040,(11477),15483,...;
(1036),(4529),12569,(28052),48800,(82328),124335,(186261),...;
(12569),(61369),185704,(446560),811111,(1438447),2250731,...;
...
and has a recurrence similar to that of square array A136212
which generates the triple factorials.
		

Crossrefs

Cf. A136220 (P), A136228 (U), A136231 (W=P^3).
Cf. other columns of P: A136222, A136223, A136224.
Cf. related tables: A136217, A136218.
Cf. variants: A091352, A135881.

Programs

  • PARI
    /* Generate using matrix product recurrences of triangle A136220: */ {a(n)=local(P=Mat(1),U,PShR);if(n>0,for(i=0,n, PShR=matrix(#P,#P, r,c, if(r>=c,if(r==c,1,if(c==1,0,P[r-1,c-1]))));U=P*PShR^2; U=matrix(#P+1, #P+1, r,c, if(r>=c, if(r<#P+1,U[r,c], if(c==1,(P^3)[ #P,1],(P^(3*c-1))[r-c+1,1])))); P=matrix(#U, #U, r,c, if(r>=c, if(r<#R,P[r,c], (U^c)[r-c+1,1])))));P[n+1,1]}
    
  • PARI
    /* Generated as column 0 in triangle A136218 (faster): */ {a(n)=local(A=[1],B);if(n>0,for(i=1,n,m=1;B=[0]; for(j=1,#A,if(j+m-1==(m*(m+7))\6,m+=1;B=concat(B,0));B=concat(B,A[j])); A=Vec(Polrev(Vec(Pol(B)/(1-x+O(x^#B)))))));A[1]}

A136231 Triangle W, read by rows, where column k of W = column 0 of W^(k+1) for k>=0 such that W equals the matrix cube of P = A136220 with column 0 of W = column 0 of P shift up one row.

Original entry on oeis.org

1, 3, 1, 15, 6, 1, 108, 48, 9, 1, 1036, 495, 99, 12, 1, 12569, 6338, 1323, 168, 15, 1, 185704, 97681, 21036, 2754, 255, 18, 1, 3247546, 1767845, 390012, 52204, 4950, 360, 21, 1, 65762269, 36839663, 8287041, 1128404, 108860, 8073, 483, 24, 1, 1515642725
Offset: 0

Views

Author

Paul D. Hanna, Jan 28 2008

Keywords

Comments

This triangle W is the column transform for triangles U=A136228 and V=A136230: W * [column k of U] = column k+1 of U and W * [column k of V] = column k+1 of V, for k>=0.

Examples

			Triangle W begins:
1;
3, 1;
15, 6, 1;
108, 48, 9, 1;
1036, 495, 99, 12, 1;
12569, 6338, 1323, 168, 15, 1;
185704, 97681, 21036, 2754, 255, 18, 1;
3247546, 1767845, 390012, 52204, 4950, 360, 21, 1;
65762269, 36839663, 8287041, 1128404, 108860, 8073, 483, 24, 1; ...
where column k of W = column 0 of W^(k+1) such that W = P^3
and triangle P = A136220 begins:
1;
1, 1;
3, 2, 1;
15, 10, 3, 1;
108, 75, 21, 4, 1;
1036, 753, 208, 36, 5, 1;
12569, 9534, 2637, 442, 55, 6, 1; ...
where column k of P^3 = column 0 of P^(3k+3) such that
column 0 of P^3 = column 0 of P shift up one row.
Also, this triangle W equals the matrix product:
W = V * [V shift down one row]
where triangle V = A136230 begins:
1;
2, 1;
8, 5, 1;
49, 35, 8, 1;
414, 325, 80, 11, 1;
4529, 3820, 988, 143, 14, 1;
61369, 54800, 14696, 2200, 224, 17, 1; ...
and V shift down one row begins:
1;
1, 1;
2, 1, 1;
8, 5, 1, 1;
49, 35, 8, 1, 1;
414, 325, 80, 11, 1, 1;
4529, 3820, 988, 143, 14, 1, 1; ...
		

Crossrefs

Cf. A136221 (column 0); related tables: A136220 (P), A136225 (P^2), A136228 (U), A136230 (V), A136235 (W^2), A136238 (W^3); A136217, A136218.

Programs

  • PARI
    {T(n,k)=local(P=Mat(1),U=Mat(1),W=Mat(1),PShR);if(n>0,for(i=0,n, PShR=matrix(#P,#P, r,c, if(r>=c,if(r==c,1,if(c==1,0,P[r-1,c-1])))); U=P*PShR^2; U=matrix(#P+1, #P+1, r,c, if(r>=c, if(r<#P+1,U[r,c], if(c==1,(P^3)[ #P,1],(P^(3*c-1))[r-c+1,1])))); P=matrix(#U, #U, r,c, if(r>=c, if(r<#R,P[r,c], (U^c)[r-c+1,1]))); W=P^3;));W[n+1,k+1]}

A136225 Matrix square of triangle A136220, read by rows.

Original entry on oeis.org

1, 2, 1, 8, 4, 1, 49, 26, 6, 1, 414, 232, 54, 8, 1, 4529, 2657, 629, 92, 10, 1, 61369, 37405, 9003, 1320, 140, 12, 1, 996815, 627435, 153276, 22606, 2385, 198, 14, 1, 18931547, 12248365, 3031553, 450066, 47500, 3904, 266, 16, 1, 412345688, 273211787
Offset: 0

Views

Author

Paul D. Hanna, Jan 28 2008

Keywords

Comments

Column 0 of this triangle = column 1 of square array A136217.

Examples

			Let P = A136220, then this triangle is P^2 and begins:
1;
2, 1;
8, 4, 1;
49, 26, 6, 1;
414, 232, 54, 8, 1;
4529, 2657, 629, 92, 10, 1;
61369, 37405, 9003, 1320, 140, 12, 1;
996815, 627435, 153276, 22606, 2385, 198, 14, 1;
18931547, 12248365, 3031553, 450066, 47500, 3904, 266, 16, 1; ...
where column k of P^2 = column 0 of V^(k+1) and
triangle V = A136230 begins:
1;
2, 1;
8, 5, 1;
49, 35, 8, 1;
414, 325, 80, 11, 1;
4529, 3820, 988, 143, 14, 1;
61369, 54800, 14696, 2200, 224, 17, 1; ...
where column k of V = column 0 of P^(3k+2).
Triangle P = A136220 begins:
1;
1, 1;
3, 2, 1;
15, 10, 3, 1;
108, 75, 21, 4, 1;
1036, 753, 208, 36, 5, 1;
12569, 9534, 2637, 442, 55, 6, 1;
185704, 146353, 40731, 6742, 805, 78, 7, 1; ...
where column k of P = column 0 of U^(k+1) and U = A136228.
		

Crossrefs

Cf. columns: A136226, A136227; related tables: A136228 (U), A136230 (V), A136231 (W=P^3), A136217, A136218.

Programs

  • PARI
    {T(n,k)=local(P=Mat(1),U,PShR);if(n>0,for(i=0,n, PShR=matrix(#P,#P, r,c, if(r>=c,if(r==c,1,if(c==1,0,P[r-1,c-1]))));U=P*PShR^2; U=matrix(#P+1, #P+1, r,c, if(r>=c, if(r<#P+1,U[r,c], if(c==1,(P^3)[ #P,1],(P^(3*c-1))[r-c+1,1])))); P=matrix(#U, #U, r,c, if(r>=c, if(r<#R,P[r,c], (U^c)[r-c+1,1])))));(P^2)[n+1,k+1]}

Formula

Let P=A136220, V=A136230, then column k of P^2 (this triangle) = column 0 of V^(k+1) while column j of V = column 0 of P^(3j+2).

A136222 Column 1 of triangle A136220; also equals column 0 of U^2 = A136233 where U = A136228.

Original entry on oeis.org

1, 2, 10, 75, 753, 9534, 146353, 2647628, 55251994, 1308089217, 34669446816, 1017575959652, 32778617719852, 1150083357364646, 43669478546754372, 1784505372378097160, 78098473768259907870, 3645038134074497689782
Offset: 0

Views

Author

Paul D. Hanna, Dec 25 2007

Keywords

Comments

P = A136220 is a triangular matrix where column k of P^3 equals column 0 of P^(3k+3) such that column 0 of P^3 equals column 0 of P shift one place left.

Crossrefs

Cf. A136220 (P), A136228 (U), A136233 (U^2); other columns of P: A136221, A136223, A136224.

Programs

  • PARI
    {a(n)=local(P=Mat(1),U,PShR);if(n==0,1,for(i=0,n, PShR=matrix(#P,#P, r,c, if(r>=c,if(r==c,1,if(c==1,0,P[r-1,c-1]))));U=P*PShR^2; U=matrix(#P+1, #P+1, r,c, if(r>=c, if(r<#P+1,U[r,c], if(c==1,(P^3)[ #P,1],(P^(3*c-1))[r-c+1,1])))); P=matrix(#U, #U, r,c, if(r>=c, if(r<#U,P[r,c], (U^c)[r-c+1,1]))));P[n+2,2])}

A136223 Column 2 of triangle A136220; also equals column 0 of U^3 = A136236 where U = A136228.

Original entry on oeis.org

1, 3, 21, 208, 2637, 40731, 742620, 15624420, 372892266, 9959561867, 294465305959, 9551090908795, 337297690543923, 12886076807637021, 529624555043780909, 23305654066781507361, 1093356525580359412557
Offset: 0

Views

Author

Paul D. Hanna, Dec 25 2007

Keywords

Comments

P = A136220 is a triangular matrix where column k of P^3 equals column 0 of P^(3k+3) such that column 0 of P^3 equals column 0 of P shift one place left.

Crossrefs

Cf. A136220 (P), A136228 (U), A136236 (U^3); other columns of P: A136221, A136222, A136224.

Programs

  • PARI
    {a(n)=local(P=Mat(1),U,PShR);if(n==0,1,for(i=0,n+1, PShR=matrix(#P,#P, r,c, if(r>=c,if(r==c,1,if(c==1,0,P[r-1,c-1]))));U=P*PShR^2; U=matrix(#P+1, #P+1, r,c, if(r>=c, if(r<#P+1,U[r,c], if(c==1,(P^3)[ #P,1],(P^(3*c-1))[r-c+1,1])))); P=matrix(#U, #U, r,c, if(r>=c, if(r<#U,P[r,c], (U^c)[r-c+1,1]))));P[n+3,3])}

A136224 Column 3 of triangle A136220; also equals column 0 of U^4 where U = A136228.

Original entry on oeis.org

1, 4, 36, 442, 6742, 122350, 2571620, 61426282, 1643616044, 48708655760, 1583981114700, 56090062706944, 2148733943483128, 88554674908328872, 3907197406833303644, 183780036631720987407, 9180785177015520963631
Offset: 0

Views

Author

Paul D. Hanna, Dec 25 2007

Keywords

Comments

P = A136220 is a triangular matrix where column k of P^3 equals column 0 of P^(3k+3) such that column 0 of P^3 equals column 0 of P shift one place left.

Crossrefs

Cf. A136220 (P), A136228 (U); other columns of P: A136221, A136222, A136223.

Programs

  • PARI
    {a(n)=local(P=Mat(1),U,PShR);if(n==0,1,for(i=0,n+2, PShR=matrix(#P,#P, r,c, if(r>=c,if(r==c,1,if(c==1,0,P[r-1,c-1]))));U=P*PShR^2; U=matrix(#P+1, #P+1, r,c, if(r>=c, if(r<#P+1,U[r,c], if(c==1,(P^3)[ #P,1],(P^(3*c-1))[r-c+1,1])))); P=matrix(#U, #U, r,c, if(r>=c, if(r<#U,P[r,c], (U^c)[r-c+1,1]))));P[n+4,4])}

A136226 Column 0 of P^2 where triangle P = A136220; also equals column 1 of square array A136217.

Original entry on oeis.org

1, 2, 8, 49, 414, 4529, 61369, 996815, 18931547, 412345688, 10143253814, 278322514093, 8432315243347, 279689506725247, 10083429764179733, 392703359698462567, 16433405366965493214, 735484032071079495354
Offset: 0

Views

Author

Paul D. Hanna, Jan 28 2008

Keywords

Crossrefs

Cf. A136225 (P^2), A136220 (P), A136230 (V); A136217.

Programs

  • PARI
    /* Generate using matrix product recurrences of triangle P=A136220: */ {a(n)=local(P=Mat(1),U,PShR);if(n>0,for(i=0,n, PShR=matrix(#P,#P, r,c, if(r>=c,if(r==c,1,if(c==1,0,P[r-1,c-1]))));U=P*PShR^2; U=matrix(#P+1, #P+1, r,c, if(r>=c, if(r<#P+1,U[r,c], if(c==1,(P^3)[ #P,1],(P^(3*c-1))[r-c+1,1])))); P=matrix(#U, #U, r,c, if(r>=c, if(r<#R,P[r,c], (U^c)[r-c+1,1])))));(P^2)[n+1,1]}

Formula

Equals column 0 of triangle V = A136230, where column k of V = column 0 of P^(3k+2) such that column k of P^2 = column 0 of V^(k+1), for k>=0 and where P = A136220.

A136235 Matrix square of triangle W = A136231; also equals P^6, where P = triangle A136220.

Original entry on oeis.org

1, 6, 1, 48, 12, 1, 495, 150, 18, 1, 6338, 2160, 306, 24, 1, 97681, 36103, 5643, 516, 30, 1, 1767845, 694079, 115917, 11592, 780, 36, 1, 36839663, 15164785, 2657946, 282122, 20655, 1098, 42, 1, 870101407, 372225541, 67708113, 7502470, 580780
Offset: 0

Views

Author

Paul D. Hanna, Feb 07 2008

Keywords

Examples

			This triangle, W^2, begins:
1;
6, 1;
48, 12, 1;
495, 150, 18, 1;
6338, 2160, 306, 24, 1;
97681, 36103, 5643, 516, 30, 1;
1767845, 694079, 115917, 11592, 780, 36, 1;
36839663, 15164785, 2657946, 282122, 20655, 1098, 42, 1;
870101407, 372225541, 67708113, 7502470, 580780, 33480, 1470, 48, 1; ...
where column 0 of W^2 = column 1 of W = triangle A136231.
		

Crossrefs

Cf. A136221 (column 0); related tables: A136220 (P), A136228 (U), A136230 (V), A136231 (W), A136238 (W^3).

Programs

  • PARI
    {T(n,k)=local(P=Mat(1),U=Mat(1),W=Mat(1),PShR);if(n>0,for(i=0,n, PShR=matrix(#P,#P, r,c, if(r>=c,if(r==c,1,if(c==1,0,P[r-1,c-1])))); U=P*PShR^2; U=matrix(#P+1, #P+1, r,c, if(r>=c, if(r<#P+1,U[r,c], if(c==1,(P^3)[ #P,1],(P^(3*c-1))[r-c+1,1])))); P=matrix(#U, #U, r,c, if(r>=c, if(r<#R,P[r,c], (U^c)[r-c+1,1]))); W=P^3;));(W^2)[n+1,k+1]}

Formula

Column k of W^2 (this triangle) = column 1 of W^(k+1), where W = P^3 and P = triangle A136220.
Showing 1-10 of 19 results. Next