A136220 Triangle P, read by rows, where column k of P^3 equals column 0 of P^(3k+3) such that column 0 of P^3 equals column 0 of P shift one row up, with P(0,0)=1.
1, 1, 1, 3, 2, 1, 15, 10, 3, 1, 108, 75, 21, 4, 1, 1036, 753, 208, 36, 5, 1, 12569, 9534, 2637, 442, 55, 6, 1, 185704, 146353, 40731, 6742, 805, 78, 7, 1, 3247546, 2647628, 742620, 122350, 14330, 1325, 105, 8, 1, 65762269, 55251994, 15624420, 2571620
Offset: 0
Examples
Triangle P begins: 1; 1, 1; 3, 2, 1; 15, 10, 3, 1; 108, 75, 21, 4, 1; 1036, 753, 208, 36, 5, 1; 12569, 9534, 2637, 442, 55, 6, 1; 185704, 146353, 40731, 6742, 805, 78, 7, 1; 3247546, 2647628, 742620, 122350, 14330, 1325, 105, 8, 1; 65762269, 55251994, 15624420, 2571620, 298240, 26943, 2030, 136, 9, 1; ... where column k of P = column 0 of U^(k+1) and U = A136228. Matrix cube, W = P^3 (A136231), begins: 1; 3, 1; 15, 6, 1; 108, 48, 9, 1; 1036, 495, 99, 12, 1; 12569, 6338, 1323, 168, 15, 1; 185704, 97681, 21036, 2754, 255, 18, 1; ... where column k of P^3 = column 0 of P^(3k+3) such that column 0 of P^3 = column 0 of P shift one row up. Matrix square, P^2 (A136225), begins: 1; 2, 1; 8, 4, 1; 49, 26, 6, 1; 414, 232, 54, 8, 1; 4529, 2657, 629, 92, 10, 1; 61369, 37405, 9003, 1320, 140, 12, 1; ... where column k of P^2 = column 0 of V^(k+1) and triangle V = A136230 begins: 1; 2, 1; 8, 5, 1; 49, 35, 8, 1; 414, 325, 80, 11, 1; 4529, 3820, 988, 143, 14, 1; 61369, 54800, 14696, 2200, 224, 17, 1; ... where column k of V = column 0 of P^(3k+2). Related triangle U = A136228 begins: 1; 1, 1; 3, 4, 1; 15, 24, 7, 1; 108, 198, 63, 10, 1; 1036, 2116, 714, 120, 13, 1; 12569, 28052, 9884, 1725, 195, 16, 1; ... where column k of U = column 0 of P^(3k+1) and column k of P = column 0 of U^(k+1). Surprisingly, column 0 of P is also found in square A136217: (1),(1),1,(1),1,(1),1,(1),1,1,(1),1,1,(1),1,1,(1),1,1,1,(1),...; (1),(2),3,(4),5,(6),7,(8),9,10,(11),12,13,(14),15,16,(17),...; (3),(8),15,(24),34,(46),59,(74),90,108,(127),147,169,(192),...; (15),(49),108,(198),306,(453),622,(838),1080,1377,(1704),...; (108),(414),1036,(2116),3493,(5555),8040,(11477),15483,...; (1036),(4529),12569,(28052),48800,(82328),124335,(186261),...; (12569),(61369),185704,(446560),811111,(1438447),2250731,...; ... and has a recurrence similar to that of square array A136212 which generates the triple factorials.
Crossrefs
Programs
-
PARI
{T(n,k)=local(P=Mat(1),U,PShR);if(n>0,for(i=0,n, PShR=matrix(#P,#P, r,c, if(r>=c,if(r==c,1,if(c==1,0,P[r-1,c-1]))));U=P*PShR^2; U=matrix(#P+1, #P+1, r,c, if(r>=c, if(r<#P+1,U[r,c], if(c==1,(P^3)[ #P,1],(P^(3*c-1))[r-c+1, 1])))); P=matrix(#U, #U, r,c, if(r>=c, if(r<#R,P[r,c], (U^c)[r-c+1, 1])))));P[n+1,k+1]}
Formula
Denote this triangle by P and define as follows.
Let [P^m]_k denote column k of matrix power P^m,
so that triangular matrix W = A136231 may be defined by
[W]_k = [P^(3k+3)]_0, for k>=0, such that
(1) W = P^3 and (2) [W]_0 = [P]_0 shift up one row.
Define the triangular matrix U = A136228 by
[U]_k = [P^(3k+1)]_0, for k>=0,
and the triangular matrix V = A136230 by
[V]_k = [P^(3k+2)]_0, for k>=0.
Then columns of P may be formed from powers of U:
[P]_k = [U^(k+1)]_0, for k>=0,
and columns of P^2 may be formed from powers of V:
[P^2]_k = [V^(k+1)]_0, for k>=0.
Further, columns of powers of P, U, V and W satisfy:
[U^(j+1)]_k = [P^(3k+1)]_j,
[V^(j+1)]_k = [P^(3k+2)]_j,
[W^(j+1)]_k = [P^(3k+3)]_j,
[W^(j+1)]_k = [W^(k+1)]_j,
[P^(3j+3)]_k = [P^(3k+3)]_j, for all j>=0, k>=0.
Also, we have the column transformations:
U * [P]k = [P]{k+1},
V * [P^2]k = [P^2]{k+1},
W * [P^3]k = [P^3]{k+1},
W * [U]k = [U]{k+1},
W * [V]k = [V]{k+1},
W * [W]k = [W]{k+1}, for all k>=0.
Other identities include the matrix products:
U = P * [P^2 shift right one column];
V = P^2 * [P shift right one column];
V = U * [U shift down one row];
W = V * [V shift down one row];
Extensions
Typo in example corrected by Paul D. Hanna, Mar 27 2010
Comments