cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A136227 Column 1 of triangle A136225; also equals column 0 of triangle A136230.

Original entry on oeis.org

1, 4, 26, 232, 2657, 37405, 627435, 12248365, 273211787, 6862775083, 191840407156, 5909873159107, 199002812894375, 7273866200397039, 286882936292798852, 12145886485652450131, 549504341899436759416
Offset: 0

Views

Author

Paul D. Hanna, Jan 28 2008

Keywords

Comments

Equals column 1 of P^2 (A136225) and equals column 0 of V^2, where P = A136220 and V = A136230 are triangular matrices such that column k of V = column 0 of P^(3k+2) and column j of P^2 = column 0 of V^(j+1).

Crossrefs

Cf. A136226, A136225 (P^2), A136220 (P), A136230 (V); A136217.

Programs

  • PARI
    /* Generate using matrix product recurrences of triangle P=A136220: */ {a(n)=local(P=Mat([1,0;1,1]),U,PShR);if(n>0,for(i=0,n+1, PShR=matrix(#P,#P, r,c, if(r>=c,if(r==c,1,if(c==1,0,P[r-1,c-1]))));U=P*PShR^2; U=matrix(#P+1, #P+1, r,c, if(r>=c, if(r<#P+1,U[r,c], if(c==1,(P^3)[ #P,1],(P^(3*c-1))[r-c+1,1])))); P=matrix(#U, #U, r,c, if(r>=c, if(r<#R,P[r,c], (U^c)[r-c+1,1])))));(P^2)[n+2,2]}

A136234 Matrix square of triangle V = A136230, read by rows.

Original entry on oeis.org

1, 4, 1, 26, 10, 1, 232, 110, 16, 1, 2657, 1435, 248, 22, 1, 37405, 22135, 4240, 440, 28, 1, 627435, 397820, 81708, 9295, 686, 34, 1, 12248365, 8203057, 1773156, 214478, 17248, 986, 40, 1, 273211787, 191405232, 43039532, 5442349, 463267, 28747, 1340
Offset: 0

Views

Author

Paul D. Hanna, Feb 07 2008

Keywords

Examples

			This triangle, V^2, begins:
1;
4, 1;
26, 10, 1;
232, 110, 16, 1;
2657, 1435, 248, 22, 1;
37405, 22135, 4240, 440, 28, 1;
627435, 397820, 81708, 9295, 686, 34, 1;
12248365, 8203057, 1773156, 214478, 17248, 986, 40, 1;
273211787, 191405232, 43039532, 5442349, 463267, 28747, 1340, 46, 1; ...
where column 0 of V^2 = column 1 of P^2 = triangle A136225.
		

Crossrefs

Cf. A136227 (column 0); related tables: A136220 (P), A136228 (U), A136230 (V), A136231 (W=P^3), A136237 (V^3).

Programs

  • PARI
    {T(n,k)=local(P=Mat(1),U=Mat(1),V=Mat(1),PShR);if(n>0,for(i=0,n, PShR=matrix(#P,#P, r,c, if(r>=c,if(r==c,1,if(c==1,0,P[r-1,c-1])))); U=P*PShR^2;V=P^2*PShR; U=matrix(#P+1, #P+1, r,c, if(r>=c, if(r<#P+1,U[r,c], if(c==1,(P^3)[ #P,1],(P^(3*c-1))[r-c+1,1])))); V=matrix(#P+1, #P+1, r,c, if(r>=c, if(r<#P+1,V[r,c], if(c==1,(P^3)[ #P,1],(P^(3*c-2))[r-c+1,1])))); P=matrix(#U, #U, r,c, if(r>=c, if(r<#R,P[r,c], (U^c)[r-c+1,1]))))); (V^2)[n+1,k+1]}

Formula

Column k of V^2 (this triangle) = column 1 of P^(3k+2), where P = triangle A136220.

A136237 Matrix cube of triangle V = A136230, read by rows.

Original entry on oeis.org

1, 6, 1, 54, 15, 1, 629, 225, 24, 1, 9003, 3770, 504, 33, 1, 153276, 71655, 10988, 891, 42, 1, 3031553, 1539315, 259236, 23903, 1386, 51, 1, 68406990, 37072448, 6688092, 672672, 44135, 1989, 60, 1, 1736020806, 992226060, 188767184, 20225436, 1442049
Offset: 0

Views

Author

Paul D. Hanna, Feb 07 2008

Keywords

Examples

			This triangle, V^3, begins:
1;
6, 1;
54, 15, 1;
629, 225, 24, 1;
9003, 3770, 504, 33, 1;
153276, 71655, 10988, 891, 42, 1;
3031553, 1539315, 259236, 23903, 1386, 51, 1;
68406990, 37072448, 6688092, 672672, 44135, 1989, 60, 1;
1736020806, 992226060, 188767184, 20225436, 1442049, 73304, 2700, 69, 1;
where column 0 of V^3 = column 2 of P^2 = triangle A136225.
		

Crossrefs

Cf. related tables: A136220 (P), A136228 (U), A136230 (V), A136231 (W=P^3), A136234 (V^2).

Programs

  • PARI
    {T(n,k)=local(P=Mat(1),U=Mat(1),V=Mat(1),PShR);if(n>0,for(i=0,n, PShR=matrix(#P,#P, r,c, if(r>=c,if(r==c,1,if(c==1,0,P[r-1,c-1])))); U=P*PShR^2;V=P^2*PShR; U=matrix(#P+1, #P+1, r,c, if(r>=c, if(r<#P+1,U[r,c], if(c==1,(P^3)[ #P,1],(P^(3*c-1))[r-c+1,1])))); V=matrix(#P+1, #P+1, r,c, if(r>=c, if(r<#P+1,V[r,c], if(c==1,(P^3)[ #P,1],(P^(3*c-2))[r-c+1,1])))); P=matrix(#U, #U, r,c, if(r>=c, if(r<#R,P[r,c], (U^c)[r-c+1,1])))));(V^3)[n+1,k+1]}

Formula

Column k of V^3 (this triangle) = column 2 of P^(3k+2), where P = triangle A136220.

A136220 Triangle P, read by rows, where column k of P^3 equals column 0 of P^(3k+3) such that column 0 of P^3 equals column 0 of P shift one row up, with P(0,0)=1.

Original entry on oeis.org

1, 1, 1, 3, 2, 1, 15, 10, 3, 1, 108, 75, 21, 4, 1, 1036, 753, 208, 36, 5, 1, 12569, 9534, 2637, 442, 55, 6, 1, 185704, 146353, 40731, 6742, 805, 78, 7, 1, 3247546, 2647628, 742620, 122350, 14330, 1325, 105, 8, 1, 65762269, 55251994, 15624420, 2571620
Offset: 0

Views

Author

Paul D. Hanna, Dec 25 2007, corrected Jan 24 2008

Keywords

Examples

			Triangle P begins:
         1;
         1,        1;
         3,        2,        1;
        15,       10,        3,       1;
       108,       75,       21,       4,      1;
      1036,      753,      208,      36,      5,     1;
     12569,     9534,     2637,     442,     55,     6,    1;
    185704,   146353,    40731,    6742,    805,    78,    7,   1;
   3247546,  2647628,   742620,  122350,  14330,  1325,  105,   8, 1;
  65762269, 55251994, 15624420, 2571620, 298240, 26943, 2030, 136, 9, 1; ...
where column k of P = column 0 of U^(k+1) and U = A136228.
Matrix cube, W = P^3 (A136231), begins:
       1;
       3,     1;
      15,     6,     1;
     108,    48,     9,    1;
    1036,   495,    99,   12,   1;
   12569,  6338,  1323,  168,  15,  1;
  185704, 97681, 21036, 2754, 255, 18, 1; ...
where column k of P^3 = column 0 of P^(3k+3) such that
column 0 of P^3 = column 0 of P shift one row up.
Matrix square, P^2 (A136225), begins:
      1;
      2,     1;
      8,     4,    1;
     49,    26,    6,    1;
    414,   232,   54,    8,   1;
   4529,  2657,  629,   92,  10,  1;
  61369, 37405, 9003, 1320, 140, 12, 1; ...
where column k of P^2 = column 0 of V^(k+1) and
triangle V = A136230 begins:
      1;
      2,     1;
      8,     5,     1;
     49,    35,     8,    1;
    414,   325,    80,   11,   1;
   4529,  3820,   988,  143,  14,  1;
  61369, 54800, 14696, 2200, 224, 17, 1; ...
where column k of V = column 0 of P^(3k+2).
Related triangle U = A136228 begins:
      1;
      1,     1;
      3,     4,    1;
     15,    24,    7,    1;
    108,   198,   63,   10,   1;
   1036,  2116,  714,  120,  13,  1;
  12569, 28052, 9884, 1725, 195, 16, 1; ...
where column k of U = column 0 of P^(3k+1)
and column k of P = column 0 of U^(k+1).
Surprisingly, column 0 of P is also found in square A136217:
(1),(1),1,(1),1,(1),1,(1),1,1,(1),1,1,(1),1,1,(1),1,1,1,(1),...;
(1),(2),3,(4),5,(6),7,(8),9,10,(11),12,13,(14),15,16,(17),...;
(3),(8),15,(24),34,(46),59,(74),90,108,(127),147,169,(192),...;
(15),(49),108,(198),306,(453),622,(838),1080,1377,(1704),...;
(108),(414),1036,(2116),3493,(5555),8040,(11477),15483,...;
(1036),(4529),12569,(28052),48800,(82328),124335,(186261),...;
(12569),(61369),185704,(446560),811111,(1438447),2250731,...;
...
and has a recurrence similar to that of square array A136212
which generates the triple factorials.
		

Crossrefs

Related tables: A136228 (U), A136230 (V), A136231 (W=P^3), A136217, A136218.
Variants: A091351, A135880.

Programs

  • PARI
    {T(n,k)=local(P=Mat(1),U,PShR);if(n>0,for(i=0,n, PShR=matrix(#P,#P, r,c,
    if(r>=c,if(r==c,1,if(c==1,0,P[r-1,c-1]))));U=P*PShR^2; U=matrix(#P+1,
    #P+1, r,c, if(r>=c, if(r<#P+1,U[r,c], if(c==1,(P^3)[ #P,1],(P^(3*c-1))[r-c+1,
    1])))); P=matrix(#U, #U, r,c, if(r>=c, if(r<#R,P[r,c], (U^c)[r-c+1,
    1])))));P[n+1,k+1]}

Formula

Denote this triangle by P and define as follows.
Let [P^m]_k denote column k of matrix power P^m,
so that triangular matrix W = A136231 may be defined by
[W]_k = [P^(3k+3)]_0, for k>=0, such that
(1) W = P^3 and (2) [W]_0 = [P]_0 shift up one row.
Define the triangular matrix U = A136228 by
[U]_k = [P^(3k+1)]_0, for k>=0,
and the triangular matrix V = A136230 by
[V]_k = [P^(3k+2)]_0, for k>=0.
Then columns of P may be formed from powers of U:
[P]_k = [U^(k+1)]_0, for k>=0,
and columns of P^2 may be formed from powers of V:
[P^2]_k = [V^(k+1)]_0, for k>=0.
Further, columns of powers of P, U, V and W satisfy:
[U^(j+1)]_k = [P^(3k+1)]_j,
[V^(j+1)]_k = [P^(3k+2)]_j,
[W^(j+1)]_k = [P^(3k+3)]_j,
[W^(j+1)]_k = [W^(k+1)]_j,
[P^(3j+3)]_k = [P^(3k+3)]_j, for all j>=0, k>=0.
Also, we have the column transformations:
U * [P]k = [P]{k+1},
V * [P^2]k = [P^2]{k+1},
W * [P^3]k = [P^3]{k+1},
W * [U]k = [U]{k+1},
W * [V]k = [V]{k+1},
W * [W]k = [W]{k+1}, for all k>=0.
Other identities include the matrix products:
U = P * [P^2 shift right one column];
V = P^2 * [P shift right one column];
V = U * [U shift down one row];
W = V * [V shift down one row];
where the triangle transformations "shift right" and "shift down" are illustrated in examples of entries A136228 (U) and A136230 (V).

Extensions

Typo in example corrected by Paul D. Hanna, Mar 27 2010

A136228 Triangle U, read by rows, where column k of U^(j+1) = column j of P^(3k+1) for j>=0, k>=0 and P=A136220.

Original entry on oeis.org

1, 1, 1, 3, 4, 1, 15, 24, 7, 1, 108, 198, 63, 10, 1, 1036, 2116, 714, 120, 13, 1, 12569, 28052, 9884, 1725, 195, 16, 1, 185704, 446560, 162729, 29190, 3393, 288, 19, 1, 3247546, 8325700, 3117660, 571225, 67756, 5880, 399, 22, 1, 65762269, 178284892
Offset: 0

Views

Author

Paul D. Hanna, Jan 28 2008

Keywords

Examples

			Triangle U begins:
1;
1, 1;
3, 4, 1;
15, 24, 7, 1;
108, 198, 63, 10, 1;
1036, 2116, 714, 120, 13, 1;
12569, 28052, 9884, 1725, 195, 16, 1;
185704, 446560, 162729, 29190, 3393, 288, 19, 1;
3247546, 8325700, 3117660, 571225, 67756, 5880, 399, 22, 1; ...
where column k of U = column 0 of P^(3k+1) and
triangle P = A136220 begins:
1;
1, 1;
3, 2, 1;
15, 10, 3, 1;
108, 75, 21, 4, 1;
1036, 753, 208, 36, 5, 1;
12569, 9534, 2637, 442, 55, 6, 1;
185704, 146353, 40731, 6742, 805, 78, 7, 1; ...
where column k of P = column 0 of U^(k+1).
Also, this triangle U can be obtained by the matrix product:
U = P * [P^2 shift right one column]
where P^2 shift right one column begins:
1;
0, 1;
0, 2, 1;
0, 8, 4, 1;
0, 49, 26, 6, 1;
0, 414, 232, 54, 8, 1;
0, 4529, 2657, 629, 92, 10, 1;
0, 61369, 37405, 9003, 1320, 140, 12, 1; ...
		

Crossrefs

Cf. A136221 (column 0), A136229 (column 1); related tables: A136220 (P), A136225 (P^2), A136230 (V), A136231 (W=P^3), A136217, A136218.

Programs

  • PARI
    {T(n,k)=local(P=Mat(1),U=Mat(1),PShR);if(n>0,for(i=0,n, PShR=matrix(#P,#P, r,c, if(r>=c,if(r==c,1,if(c==1,0,P[r-1,c-1]))));U=P*PShR^2; U=matrix(#P+1, #P+1, r,c, if(r>=c, if(r<#P+1,U[r,c], if(c==1,(P^3)[ #P,1],(P^(3*c-1))[r-c+1,1])))); P=matrix(#U, #U, r,c, if(r>=c, if(r<#R,P[r,c], (U^c)[r-c+1,1])))));U[n+1,k+1]}

Formula

This triangle U = P * [P^2 shift right one column] (see example), where P = A136220 and P^2 = A136225.

A136231 Triangle W, read by rows, where column k of W = column 0 of W^(k+1) for k>=0 such that W equals the matrix cube of P = A136220 with column 0 of W = column 0 of P shift up one row.

Original entry on oeis.org

1, 3, 1, 15, 6, 1, 108, 48, 9, 1, 1036, 495, 99, 12, 1, 12569, 6338, 1323, 168, 15, 1, 185704, 97681, 21036, 2754, 255, 18, 1, 3247546, 1767845, 390012, 52204, 4950, 360, 21, 1, 65762269, 36839663, 8287041, 1128404, 108860, 8073, 483, 24, 1, 1515642725
Offset: 0

Views

Author

Paul D. Hanna, Jan 28 2008

Keywords

Comments

This triangle W is the column transform for triangles U=A136228 and V=A136230: W * [column k of U] = column k+1 of U and W * [column k of V] = column k+1 of V, for k>=0.

Examples

			Triangle W begins:
1;
3, 1;
15, 6, 1;
108, 48, 9, 1;
1036, 495, 99, 12, 1;
12569, 6338, 1323, 168, 15, 1;
185704, 97681, 21036, 2754, 255, 18, 1;
3247546, 1767845, 390012, 52204, 4950, 360, 21, 1;
65762269, 36839663, 8287041, 1128404, 108860, 8073, 483, 24, 1; ...
where column k of W = column 0 of W^(k+1) such that W = P^3
and triangle P = A136220 begins:
1;
1, 1;
3, 2, 1;
15, 10, 3, 1;
108, 75, 21, 4, 1;
1036, 753, 208, 36, 5, 1;
12569, 9534, 2637, 442, 55, 6, 1; ...
where column k of P^3 = column 0 of P^(3k+3) such that
column 0 of P^3 = column 0 of P shift up one row.
Also, this triangle W equals the matrix product:
W = V * [V shift down one row]
where triangle V = A136230 begins:
1;
2, 1;
8, 5, 1;
49, 35, 8, 1;
414, 325, 80, 11, 1;
4529, 3820, 988, 143, 14, 1;
61369, 54800, 14696, 2200, 224, 17, 1; ...
and V shift down one row begins:
1;
1, 1;
2, 1, 1;
8, 5, 1, 1;
49, 35, 8, 1, 1;
414, 325, 80, 11, 1, 1;
4529, 3820, 988, 143, 14, 1, 1; ...
		

Crossrefs

Cf. A136221 (column 0); related tables: A136220 (P), A136225 (P^2), A136228 (U), A136230 (V), A136235 (W^2), A136238 (W^3); A136217, A136218.

Programs

  • PARI
    {T(n,k)=local(P=Mat(1),U=Mat(1),W=Mat(1),PShR);if(n>0,for(i=0,n, PShR=matrix(#P,#P, r,c, if(r>=c,if(r==c,1,if(c==1,0,P[r-1,c-1])))); U=P*PShR^2; U=matrix(#P+1, #P+1, r,c, if(r>=c, if(r<#P+1,U[r,c], if(c==1,(P^3)[ #P,1],(P^(3*c-1))[r-c+1,1])))); P=matrix(#U, #U, r,c, if(r>=c, if(r<#R,P[r,c], (U^c)[r-c+1,1]))); W=P^3;));W[n+1,k+1]}

A136225 Matrix square of triangle A136220, read by rows.

Original entry on oeis.org

1, 2, 1, 8, 4, 1, 49, 26, 6, 1, 414, 232, 54, 8, 1, 4529, 2657, 629, 92, 10, 1, 61369, 37405, 9003, 1320, 140, 12, 1, 996815, 627435, 153276, 22606, 2385, 198, 14, 1, 18931547, 12248365, 3031553, 450066, 47500, 3904, 266, 16, 1, 412345688, 273211787
Offset: 0

Views

Author

Paul D. Hanna, Jan 28 2008

Keywords

Comments

Column 0 of this triangle = column 1 of square array A136217.

Examples

			Let P = A136220, then this triangle is P^2 and begins:
1;
2, 1;
8, 4, 1;
49, 26, 6, 1;
414, 232, 54, 8, 1;
4529, 2657, 629, 92, 10, 1;
61369, 37405, 9003, 1320, 140, 12, 1;
996815, 627435, 153276, 22606, 2385, 198, 14, 1;
18931547, 12248365, 3031553, 450066, 47500, 3904, 266, 16, 1; ...
where column k of P^2 = column 0 of V^(k+1) and
triangle V = A136230 begins:
1;
2, 1;
8, 5, 1;
49, 35, 8, 1;
414, 325, 80, 11, 1;
4529, 3820, 988, 143, 14, 1;
61369, 54800, 14696, 2200, 224, 17, 1; ...
where column k of V = column 0 of P^(3k+2).
Triangle P = A136220 begins:
1;
1, 1;
3, 2, 1;
15, 10, 3, 1;
108, 75, 21, 4, 1;
1036, 753, 208, 36, 5, 1;
12569, 9534, 2637, 442, 55, 6, 1;
185704, 146353, 40731, 6742, 805, 78, 7, 1; ...
where column k of P = column 0 of U^(k+1) and U = A136228.
		

Crossrefs

Cf. columns: A136226, A136227; related tables: A136228 (U), A136230 (V), A136231 (W=P^3), A136217, A136218.

Programs

  • PARI
    {T(n,k)=local(P=Mat(1),U,PShR);if(n>0,for(i=0,n, PShR=matrix(#P,#P, r,c, if(r>=c,if(r==c,1,if(c==1,0,P[r-1,c-1]))));U=P*PShR^2; U=matrix(#P+1, #P+1, r,c, if(r>=c, if(r<#P+1,U[r,c], if(c==1,(P^3)[ #P,1],(P^(3*c-1))[r-c+1,1])))); P=matrix(#U, #U, r,c, if(r>=c, if(r<#R,P[r,c], (U^c)[r-c+1,1])))));(P^2)[n+1,k+1]}

Formula

Let P=A136220, V=A136230, then column k of P^2 (this triangle) = column 0 of V^(k+1) while column j of V = column 0 of P^(3j+2).

A136226 Column 0 of P^2 where triangle P = A136220; also equals column 1 of square array A136217.

Original entry on oeis.org

1, 2, 8, 49, 414, 4529, 61369, 996815, 18931547, 412345688, 10143253814, 278322514093, 8432315243347, 279689506725247, 10083429764179733, 392703359698462567, 16433405366965493214, 735484032071079495354
Offset: 0

Views

Author

Paul D. Hanna, Jan 28 2008

Keywords

Crossrefs

Cf. A136225 (P^2), A136220 (P), A136230 (V); A136217.

Programs

  • PARI
    /* Generate using matrix product recurrences of triangle P=A136220: */ {a(n)=local(P=Mat(1),U,PShR);if(n>0,for(i=0,n, PShR=matrix(#P,#P, r,c, if(r>=c,if(r==c,1,if(c==1,0,P[r-1,c-1]))));U=P*PShR^2; U=matrix(#P+1, #P+1, r,c, if(r>=c, if(r<#P+1,U[r,c], if(c==1,(P^3)[ #P,1],(P^(3*c-1))[r-c+1,1])))); P=matrix(#U, #U, r,c, if(r>=c, if(r<#R,P[r,c], (U^c)[r-c+1,1])))));(P^2)[n+1,1]}

Formula

Equals column 0 of triangle V = A136230, where column k of V = column 0 of P^(3k+2) such that column k of P^2 = column 0 of V^(k+1), for k>=0 and where P = A136220.

A136233 Matrix square of triangle U = A136228, read by rows.

Original entry on oeis.org

1, 2, 1, 10, 8, 1, 75, 76, 14, 1, 753, 888, 196, 20, 1, 9534, 12542, 3087, 370, 26, 1, 146353, 209506, 55552, 7320, 598, 32, 1, 2647628, 4058806, 1136975, 159645, 14235, 880, 38, 1, 55251994, 89706276, 26224597, 3856065, 364403, 24480, 1216, 44, 1
Offset: 0

Views

Author

Paul D. Hanna, Feb 07 2008

Keywords

Examples

			This triangle, U^2, begins:
1;
2, 1;
10, 8, 1;
75, 76, 14, 1;
753, 888, 196, 20, 1;
9534, 12542, 3087, 370, 26, 1;
146353, 209506, 55552, 7320, 598, 32, 1;
2647628, 4058806, 1136975, 159645, 14235, 880, 38, 1;
55251994, 89706276, 26224597, 3856065, 364403, 24480, 1216, 44, 1; ...
where column 0 of U^2 = column 1 of P = A136220.
		

Crossrefs

Cf. A136222 (column 0); related tables: A136220 (P), A136228 (U), A136230 (V), A136231 (W=P^3), A136236 (U^3).

Programs

  • PARI
    {T(n,k)=local(P=Mat(1),U=Mat(1),PShR);if(n>0,for(i=0,n, PShR=matrix(#P,#P, r,c, if(r>=c,if(r==c,1,if(c==1,0,P[r-1,c-1]))));U=P*PShR^2; U=matrix(#P+1, #P+1, r,c, if(r>=c, if(r<#P+1,U[r,c], if(c==1,(P^3)[ #P,1],(P^(3*c-1))[r-c+1,1])))); P=matrix(#U, #U, r,c, if(r>=c, if(r<#R,P[r,c], (U^c)[r-c+1,1])))));(U^2)[n+1,k+1]}

Formula

Column k of U^2 (this triangle) = column 1 of P^(3k+1), where P = triangle A136220.

A136235 Matrix square of triangle W = A136231; also equals P^6, where P = triangle A136220.

Original entry on oeis.org

1, 6, 1, 48, 12, 1, 495, 150, 18, 1, 6338, 2160, 306, 24, 1, 97681, 36103, 5643, 516, 30, 1, 1767845, 694079, 115917, 11592, 780, 36, 1, 36839663, 15164785, 2657946, 282122, 20655, 1098, 42, 1, 870101407, 372225541, 67708113, 7502470, 580780
Offset: 0

Views

Author

Paul D. Hanna, Feb 07 2008

Keywords

Examples

			This triangle, W^2, begins:
1;
6, 1;
48, 12, 1;
495, 150, 18, 1;
6338, 2160, 306, 24, 1;
97681, 36103, 5643, 516, 30, 1;
1767845, 694079, 115917, 11592, 780, 36, 1;
36839663, 15164785, 2657946, 282122, 20655, 1098, 42, 1;
870101407, 372225541, 67708113, 7502470, 580780, 33480, 1470, 48, 1; ...
where column 0 of W^2 = column 1 of W = triangle A136231.
		

Crossrefs

Cf. A136221 (column 0); related tables: A136220 (P), A136228 (U), A136230 (V), A136231 (W), A136238 (W^3).

Programs

  • PARI
    {T(n,k)=local(P=Mat(1),U=Mat(1),W=Mat(1),PShR);if(n>0,for(i=0,n, PShR=matrix(#P,#P, r,c, if(r>=c,if(r==c,1,if(c==1,0,P[r-1,c-1])))); U=P*PShR^2; U=matrix(#P+1, #P+1, r,c, if(r>=c, if(r<#P+1,U[r,c], if(c==1,(P^3)[ #P,1],(P^(3*c-1))[r-c+1,1])))); P=matrix(#U, #U, r,c, if(r>=c, if(r<#R,P[r,c], (U^c)[r-c+1,1]))); W=P^3;));(W^2)[n+1,k+1]}

Formula

Column k of W^2 (this triangle) = column 1 of W^(k+1), where W = P^3 and P = triangle A136220.
Showing 1-10 of 12 results. Next