A115046
G.f.: (1+x^2)^2*(x^4-6*x^3+1)/(x^2-1)^4.
Original entry on oeis.org
1, 0, 6, -6, 20, -36, 50, -114, 104, -264, 190, -510, 316, -876, 490, -1386, 720, -2064, 1014, -2934, 1380, -4020, 1826, -5346, 2360, -6936, 2990, -8814, 3724, -11004, 4570, -13530, 5536, -16416, 6630, -19686, 7860, -23364, 9234, -27474, 10760, -32040, 12446, -37086, 14300, -42636, 16330
Offset: 0
A137514
A triangular sequence from umbral calculus expansion of Simon Plouffe's rational polynomial for A002890: p(x,t) = exp(x*t)*(1 - 6*t + 9*t^2 - 4*t^3 + t^4)/(4*t - 1)/(2*t - 1).
Original entry on oeis.org
1, 0, 1, 2, 0, 1, 12, 6, 0, 1, 120, 48, 12, 0, 1, 1680, 600, 120, 20, 0, 1, 31680, 10080, 1800, 240, 30, 0, 1, 766080, 221760, 35280, 4200, 420, 42, 0, 1, 22579200, 6128640, 887040, 94080, 8400, 672, 56, 0, 1, 778014720, 203212800, 27578880, 2661120, 211680, 15120, 1008, 72, 0, 1
Offset: 1
Triangle begins:
{1},
{0, 1},
{2, 0, 1},
{12, 6, 0, 1},
{120, 48, 12, 0, 1},
{1680, 600, 120, 20, 0, 1},
{31680, 10080, 1800, 240, 30, 0, 1},
{766080, 221760, 35280, 4200, 420, 42, 0, 1},
{22579200, 6128640, 887040, 94080, 8400, 672, 56, 0, 1},
{778014720, 203212800, 27578880, 2661120, 211680, 15120, 1008, 72, 0, 1},
...
- Terrel L. Hill, Statistical Mechanics: Principles and Selected Applications, Dover, New York, 1956, page 336 ff
-
Clear[p, f, g] p[t_] = Exp[x*t]*(1 - 6*t + 9*t^2 - 4*t^3 + t^4)/(4*t - 1)/(2*t - 1); Table[ ExpandAll[n!*SeriesCoefficient[Series[p[t], {t, 0, 30}], n]], {n, 0, 10}] a = Table[ CoefficientList[n!*SeriesCoefficient[; FullSimplify[Series[p[t], {t, 0, 30}]], n], x], {n, 0, 10}]; Flatten[a]
A137785
Triangular sequence of coefficients of the expansion of p(x,t) = exp(x*t)*(1 + t^2)^2/(t*(1 - t^2)).
Original entry on oeis.org
0, 1, 6, 0, 1, 0, 18, 0, 1, 96, 0, 36, 0, 1, 0, 480, 0, 60, 0, 1, 2880, 0, 1440, 0, 90, 0, 1, 0, 20160, 0, 3360, 0, 126, 0, 1, 161280, 0, 80640, 0, 6720, 0, 168, 0, 1, 0, 1451520, 0, 241920, 0, 12096, 0, 216, 0, 1, 14515200, 0, 7257600, 0, 604800, 0, 20160, 0, 270, 0, 1
Offset: 1
{0, 1},
{6, 0, 1},
{0, 18, 0, 1},
{96, 0, 36, 0, 1},
{0, 480, 0, 60, 0, 1},
{2880, 0, 1440, 0, 90, 0, 1},
{0, 20160, 0, 3360, 0, 126, 0, 1},
{161280, 0, 80640, 0, 6720, 0, 168, 0, 1},
{0, 1451520, 0, 241920, 0, 12096, 0, 216, 0, 1},
{14515200, 0, 7257600, 0, 604800, 0, 20160, 0, 270, 0, 1},
{0, 159667200, 0, 26611200, 0, 1330560, 0, 31680, 0, 330, 0, 1}
- The Beauty of Fractals, Springer-Verlag, New York, 1986, editors Peitgen and Richter, pages 153
- Terrell Hill, Statistical Mechanics, Dover, 1987, page 329 ff
-
p[t_] = Exp[x*t]*(1 + t^2)^2/(t*(1 - t^2));
Table[ ExpandAll[(n + 1)!*SeriesCoefficient[ Series[p[t], {t, 0, 30}], n]], { n, 0, 10}];
a = Table[(n + 1)!* CoefficientList[SeriesCoefficient[ Series[p[t], {t, 0, 30}], n], x], {n, 0, 10}];
Flatten[a]
Showing 1-3 of 3 results.
Comments