cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A136298 a(n) = 3*a(n-1) - 4*a(n-3), with a(0)=1, a(1)=2, a(2)=4, a(3)=9.

Original entry on oeis.org

1, 2, 4, 9, 19, 41, 87, 185, 391, 825, 1735, 3641, 7623, 15929, 33223, 69177, 143815, 298553, 618951, 1281593, 2650567, 5475897, 11301319, 23301689, 48001479, 98799161, 203190727, 417566265, 857502151, 1759743545, 3608965575
Offset: 0

Views

Author

Paul Curtz, Mar 22 2008

Keywords

Crossrefs

Programs

  • Magma
    [1] cat [(2^(n-2)*(31+3*n) - (-1)^n)/9: n in [1..40]]; // G. C. Greubel, Apr 12 2021
    
  • Mathematica
    LinearRecurrence[{3,0,-4}, {1,2,4,9}, 41] (* G. C. Greubel, Apr 12 2021 *)
  • Sage
    [1]+[(2^(n-2)*(31+3*n) - (-1)^n)/9 for n in (1..40)] # G. C. Greubel, Apr 12 2021

Formula

From R. J. Mathar, Apr 04 2008: (Start)
O.g.f.: (1 -x -2*x^2 +x^3)/((1+x)*(1-2*x)^2).
a(n) = (7*2^n - (-1)^n)/9 + A001787(n+1)/12 if n>0. (End)
From G. C. Greubel, Apr 12 2021: (Start)
a(n) = (2^(n-2)*(3*n+31) - (-1)^n)/9 + (1/4)*[n=0].
E.g.f.: (1/36)*(9 - 4*exp(-x) + (31 + 6*x)*exp(2*x)). (End)

Extensions

More terms from R. J. Mathar, Apr 04 2008