cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A136303 Expansion of g.f. (1 +x^2)/((1-x)^2*(1 -3*x +2*x^2 -x^3)).

Original entry on oeis.org

1, 5, 17, 48, 123, 300, 714, 1679, 3925, 9149, 21296, 49537, 115192, 267824, 622653, 1447533, 3365149, 7823068, 18186475, 42278476, 98285586, 228486323, 531166317, 1234811937, 2870589548, 6673311137, 15513566304, 36064666240, 83840177305
Offset: 0

Views

Author

Richard Choulet, Mar 22 2008

Keywords

Comments

Previous name: Transform of 0 by the reciprocal transformation to T_{1,1} (see link).

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1+x^2)/((1-x)^2*(1-3*x+2*x^2-x^3)) )); // G. C. Greubel, Apr 19 2021
    
  • Maple
    A136303:= n-> -2*(n+2) + add( (5*binomial(n+k+2, 3*k+2) - 4*binomial(n +k+1, 3*k+2) + 2*binomial(n+k, 3*k+2)), k=0..n/2 );
    seq(A136303(n), n=0..40); # G. C. Greubel, Apr 19 2021
  • Mathematica
    LinearRecurrence[{5,-9,8,-4,1},{1,5,17,48,123},40] (* Harvey P. Dale, Apr 01 2018 *)
  • Sage
    def A136303_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1+x^2)/((1-x)^2*(1-3*x+2*x^2-x^3)) ).list()
    A136303_list(40) # G. C. Greubel, Apr 19 2021

Formula

G.f.: f(z) = 1 +5*z + ... = (1+z^2)/((1-z)^2*(1-3*z+2*z^2-z^3)).
a(n+5) = 5*a(n+4) -9*a(n+3) +8*a(n+2) -4*a(n+1) +a(n) (n>=0). - Richard Choulet, Apr 07 2009
From G. C. Greubel, Apr 19 2021: (Start)
a(n) = -2*(n+2) + 5*A095263(n) - 4*A095263(n-1) + 2*A095263(n-2).
a(n) = -2*(n+2) + Sum_{k=0..floor(n/2)} (5*binomial(n+k+2, 3*k+2) - 4*binomial(n +k+1, 3*k+2) + 2*binomial(n+k, 3*k+2)). (End)