A136437 a(n) = prime(n) - k! where k is the greatest number such that k! <= prime(n).
0, 1, 3, 1, 5, 7, 11, 13, 17, 5, 7, 13, 17, 19, 23, 29, 35, 37, 43, 47, 49, 55, 59, 65, 73, 77, 79, 83, 85, 89, 7, 11, 17, 19, 29, 31, 37, 43, 47, 53, 59, 61, 71, 73, 77, 79, 91, 103, 107, 109, 113, 119, 121, 131, 137, 143, 149, 151, 157, 161, 163, 173, 187, 191, 193, 197, 211, 217, 227, 229, 233, 239, 247
Offset: 1
Examples
a(1) = prime(1) - 2! = 2 - 2 = 0; a(2) = prime(2) - 2! = 3 - 2 = 1; a(3) = prime(3) - 2! = 5 - 2 = 3; a(4) = prime(4) - 3! = 7 - 6 = 1; a(5) = prime(5) - 3! = 11 - 6 = 5; a(6) = prime(6) - 3! = 13 - 6 = 7; a(7) = prime(7) - 3! = 17 - 6 = 11; a(8) = prime(8) - 3! = 19 - 6 = 13; a(9) = prime(9) - 3! = 23 - 6 = 17; a(10) = prime(10) - 4! = 29 - 24 = 5.
Links
- Jinyuan Wang, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Maple
f:=proc(n) local p,i; p:=ithprime(n); for i from 0 to p do if i! > p then break; fi; od; p-(i-1)!; end; [seq(f(n),n=1..70)]; # N. J. A. Sloane, May 22 2012
-
Mathematica
a[n_] := Module[{p, k},p = Prime[n];k = 1;While[Factorial[k] <= p, k++];p - Factorial[k - 1]] (* James C. McMahon, May 05 2025 *)
-
PARI
a(n) = my(k=1, p=prime(n)); while (k! <= p, k++); p - (k-1)!; \\ Michel Marcus, Feb 19 2019
Formula
a(n) = prime(n)- k! where k is the greatest number for which k! <= prime(n).
a(n) = A212598(prime(n)). - Michel Marcus, Feb 19 2019
Extensions
More terms from Jinyuan Wang, Feb 18 2019
Comments